

Temora Hospital redevelopment: Human health and ecological risk assessment

Prepared for: Capital Insight and NSW Health Infrastructure

Document History and Status

Report Reference HI/24/TEMR001 B – Final

Date 17 October 2024

Previous Revisions A – Draft (25 September 2024)

Limitations

Environmental Risk Sciences Pty Ltd has prepared this report for the use of Capital Insight and New South Wales Health Infrastructure in accordance with the usual care and thoroughness of the consulting profession. It is based on generally accepted practices and standards at the time it was prepared. No other warranty, expressed or implied, is made as to the professional advice included in this report.

It is prepared in accordance with the scope of work and for the purpose outlined in **Section 1** of this report.

The methodology adopted, and sources of information used are outlined in this report. Environmental Risk Sciences Pty Ltd has made no independent verification of this information beyond the agreed scope of works and assumes no responsibility for any inaccuracies or omissions. No indications were found that information contained in the reports provided for use in this assessment was false.

This report was prepared in September/October 2024 and is based on the information provided and reviewed at that time. Environmental Risk Sciences Pty Ltd disclaims responsibility for any changes that may have occurred after this time.

This report should be read in full. No responsibility is accepted for use of any part of this report in any other context or for any other purpose or by third parties. This report does not purport to give legal advice. Legal advice can only be given by qualified legal practitioners.

This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of enRiskS. Any reference to all or part of this report by third parties must be attributed to enRiskS (2024).

Table of Contents

Section	1. Background	1
1.1	Introduction	
1.2	Objectives	
1.3	Methodology	1
1.4	Regulatory framework	4
Section		5
2.1	General	5
2.2	Site description	5
2.2.	Site details	5
2.3	Environmental setting	g
2.3.	l Climate	9
2.3.2	P Topography	9
2.3.3	Regional geology	g
2.3.4	Acid sulfate soils	g
2.3.5	5 Hydrogeology	g
2.3.6	S Surface water bodies	10
2.4	Potential sources of contamination	10
2.5	Nature and extent of contamination.	11
2.6	Conceptual site model	14
Section		
3.1	General	16
3.2	Screening assessment for soil chemical concentrations	16
3.2.1	Human health screening assessment	16
3.2.2	2 Ecological screening assessment	18
Section		
4.1	General	
4.2	Toxicity of benzo(a)pyrene and carcinogenic PAHs	
4.2.		_
4.2.2	2 Toxic equivalence factor approach for carcinogenic PAHs	
4.2.3	Background exposure	21
4.2.4		
4.3	Calculation of a site-specific soil screening criteria	22
4.4	Uncertainties	23
Section	5. Conclusions and recommendations	25
Section	6 Poforoncos	26

Appendices: Appendix A

Site soil monitoring data Site-specific ecological investigation levels Appendix B
Appendix C
Appendix D

Toxicity summary for benzo(a)pyrene
Site-specific health investigation level calculations

List of abbreviations

ASC NEPM National Environmental Protection Measure – Assessment of Site Contamination

BaP benzo(a)pyrene bgl below ground level

BTEX benzene, toluene, ethylbenzene and xylenes
CCME Canadian Council of Ministers of the Environment

CEC cation exchange capacity

CLM Act Contaminated Land Management Act

CRC CARE Cooperative Research Centre for Contamination Assessment and Remediation of the Environment

CSM conceptual site model

DSI detailed site investigation

EIL ecological investigation level

enRiskS Environmental Risk Sciences Pty Ltd

ESL ecological screening level FCF fibre cement fragments

HHERA human health and ecological risk assessment

HI Health Infrastructure
HIL health investigation level
HSL health screening level
LOR limit of Reporting

MLHD Murrumbidgee Local Health District
NEPC National Environment Protection Council

NL not limiting

NSW New South Wales

OCP organochlorine pesticides
OPP organophosphate pesticides
PAH polycyclic aromatic hydrocarbons

PCB polychlorinated biphenyl PSI preliminary site investigation

RAP remedial action plan

SEPP State Environmental Planning Policy

SQG soil quality guideline

TCLP toxicity characteristic leaching procedure

TEF toxicity equivalence factor

TEQ toxic equivalence

TRH total recoverable hydrocarbons

TRV toxicity reference value

USEPA United States Environmental Protection Agency

WHO World Health Organisation

Executive Summary

Environmental Risk Sciences Pty Ltd (enRiskS) has been engaged by Capital Insight and New South Wales (NSW) Health Infrastructure (HI) to conduct a human health and ecological risk assessment (HHERA) in relation to the presence of contamination in soil at Temora Hospital, 169-189 Loftus Street, Temora, NSW (the 'site'). The site is currently proposed for redevelopment, which is in the detailed design phase. This HHERA was undertaken to support town planning activities for the Temora Hospital and to determine if a remedial action plan (RAP) is needed for the site to address potential risk issues related to contaminants in the soil.

A range of potential sources of contamination were identified at the site as part of a preliminary site investigation (PSI) and a detailed site investigation (DSI). These investigations were conducted to inform the redevelopment work. The potential sources identified relate to current and historical activities at the site, and the use of imported fill material.

The PSI and DSI included analysis of soil samples from the site for a range of chemicals. The concentrations of most chemicals were below the limit of reporting (LOR). However, some heavy metals, polycyclic aromatic hydrocarbons (PAHs) and petroleum hydrocarbons were reported in the soils. It is likely that some of these chemicals (e.g. heavy metals) are naturally occurring in the soil. Others may be associated with the potential sources of contamination identified for the site. The purpose of the HHERA was to determine if the concentrations of chemicals reported in the soil pose an unacceptable risk to human health or ecosystems at the site.

Based on the review of available information for the site, the following groups of people were identified as potentially being present at the site:

- construction workers during the redevelopment
- intrusive maintenance workers following the redevelopment
- site gardeners and landscapers
- hospital staff during and after the redevelopment
- patients at the hospital and visitors (including volunteer workers) who may walk in the hospital grounds during and after the redevelopment
- the local community (including residents at the adjacent residential care facility) who may take walks through the hospital grounds during and after the redevelopment.

The HHERA assessed potential risks to all of the groups listed above. This focused on potential direct exposure to chemicals in the soil, as well as exposure to vapours for volatile chemicals (where relevant). The HHERA also assessed potential ecological risks for terrestrial organisms (e.g. vegetation, soil invertebrates and microorganisms).

Based on the available data for the site, and considering the uncertainties identified, the following was concluded from the HHERA:

- human health risks are low and acceptable for all groups listed above
- ecological risks are low and acceptable.

Based on the data provided and the outcomes of the HHERA, risk management actions and a RAP are not warranted for the site.

Section 1. Background

1.1 Introduction

Environmental Risk Sciences Pty Ltd (enRiskS) has been engaged by Capital Insight and New South Wales (NSW) Health Infrastructure (HI) to conduct a human health and ecological risk assessment (HHERA) in relation to the presence of contamination in soil at Temora Hospital, 169-189 Loftus Street, Temora NSW (the 'site'). Temora Hospital is part of the Murrumbidgee Local Health District (MLHD) providing a range of services, including, emergency department, maternity, palliative care, an operating theatre and staff accommodation.

The site is currently proposed for redevelopment, which is in the detailed design phase. No specific detailed plans are available for the proposed redevelopment at this stage. However, it is understood that the redevelopment will include an extension to the current buildings and additional outdoor/uncovered car parking areas. The redeveloped hospital will provide a range of new clinical and non-clinical facilities to support the capacity issues and existing infrastructure deficiencies at the site. This HHERA was undertaken to support town planning activities for the Temora Hospital and to determine if a remedial action plan (RAP) is needed for the site to address potential risk issues related to contaminants in the soil.

1.2 Objectives

The objectives of the HHERA presented in this report were to:

- review the available soil data for the site
- use the available data to undertake a site-specific HHERA based on the use of the site as a hospital, including a tier 1 (screening level assessment) and tier 2 (detailed assessment)
- where relevant, confirm if remediation is needed at the site and/or provide risk management recommendations (if required based on the outcomes of the HHERA).

The HHERA addresses potential risks from contact with soil on the site based on the available data. The potential off-site risks and risks from exposure to other environmental media were not considered. The HHERA considers the current and proposed future land use of the site as a hospital and does not consider any potential changes to land use.

1.3 Methodology

The approach taken for the HHERA was in accordance with relevant National protocols/guidelines, including:

- enHealth Environmental Health Risk Assessment, Guidelines for Assessing Human Health Risks from Environmental Hazards (enHealth 2012a)
- enHealth Australian Exposure Factor Guide (enHealth 2012b)
- National Environmental Protection Measure Assessment of Site Contamination (ASC NEPM) including:
 - Schedule B1 Investigation Levels for Soil and Groundwater (NEPC 1999 amended 2013a)
 - Schedule B4 Guideline on Health Risk Assessment Methodology (NEPC 1999 amended 2013b)

- Schedule B5 Guideline on Ecological Risk Assessment (NEPC 1999 amended 2013c)
- Schedule B7 Guideline on Health-Based Investigation Levels (NEPC 1999 amended 2013d)
- Toolbox Note Key principles for the remediation and management of contaminated sites
- Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG 2018).

Where required, additional guidance was obtained from relevant Australian and International sources, such as that available from the United States Environmental Protection Agency (USEPA) and the Work Health Organisation (WHO) consistent with current industry best practice.

The overall approach adopted for this HHERA is outlined in **Figure 1** (adapted from enHealth 2012a), and is addressed in the following sections:

- summary of the available site information and data relevant to the development of a conceptual site model (CSM) (Section 2)
- screening assessment (human health and ecological) for chemicals reported in soil at the site to identify if any chemicals require more detailed assessment (Section 3)
- detailed assessment for key chemicals identified in the screening assessment (Section 4)
- conclusions in relation to risks associated with exposure to chemicals in soil, with consideration of the uncertainties (Section 5).

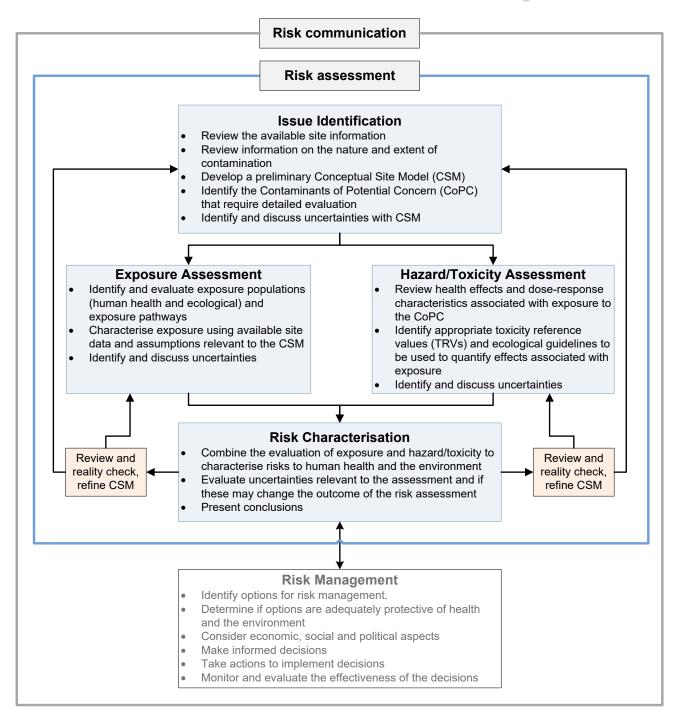


Figure 1: Risk assessment process as adapted from enHealth (2012a)

1.4 Regulatory framework

It is a requirement in NSW that, where land is to be redeveloped, an assessment be undertaken to determine if the land is contaminated due to historical activities. This assessment is used to determine if the site is suitable for the proposed use.

This process is outlined in a number of regulatory instruments including:

- Contaminated Land Management Act (1997) (the 'CLM Act') (NSW Government 1997)
- State Environmental Planning Policy (the 'SEPP') (Resilience and Hazards) (2021) (NSW Government 2021)
- Managing Land Contamination Planning Guidelines (1998) (NSW Planning 1998).

The CLM Act covers situations where contamination is likely to be significant. Whereas the SEPP and the Planning Guidelines are relevant in other situations where redevelopment is proposed but the site history does not indicate contamination is likely to be significant.

All of these instruments require site investigation to assess the potential for contamination. National guidance is available for the process of site investigation – the National Environment Protection (Assessment of Site Contamination) Measure (the 'ASC NEPM')¹. This guidance outlines how to undertake a site investigation and provides national conservative screening guidelines. These guidelines represent soil concentrations for common contaminants that do not require any further action or investigation (i.e. site is suitable).

There are a number of situations where further work is required including:

- not all chemicals that could be present at a site have national guidelines
- chemicals may be present in groundwater or soil vapour
- chemicals may be present in soil at concentrations above the national guidelines in the ASC NEPM.

In the situations listed above, the ASC NEPM provides guidance on how to undertake a more detailed evaluation of the site, i.e. a site-specific human health risk assessment. Such assessments look at the specifics of a site including the proposed purpose of the site, what sort of buildings will be constructed and how likely it is that people or organism may come into contact with soil, groundwater or soil vapour. This HHERA uses data from the preliminary and detailed site investigations at the Temora Hospital to undertake a site-specific risk assessment consistent with guidance in the ASC NEPM.

¹ https://www.nepc.gov.au/nepms/assessment-site-contamination

Section 2. Review of available site information

2.1 General

This section provides a summary of the available site information relevant to the characterisation of contamination at the site. This information was used to develop a conceptual site model (CSM) relevant to the HHERA.

The information in this section is based on a review of the following site investigation reports provided by Capital Insight:

- JK Environments (2023a) Preliminary (Stage 1) Site Investigation for Proposed Alterations and Additions at Temora Hospital, 169-189 Loftus Street, Temora, NSW. Report dated 8 June 2023 (the 'PSI')
- JK Environments (2023b) Sampling, Analysis and Quality Plan for Detailed (Stage 2) Site Investigations (DSI) at Temora Hospital, 169-189 Loftus Street, Temora, NSW. Report dated 17 August 2023 (the 'SAQP')
- JK Environments (2023c) Detailed Site Investigation for the Proposed Redevelopment at Temora Hospital, 169-189 Loftus Street, Temora, NSW. Report dated 30 October 2023 (the 'DSI').

2.2 Site description

2.2.1 Site details

The site is located approximately 4 km southeast of Lake Centenary (a man-made lake across Trigalong Creek) and is bound by Loftus Street to the south and Gloucester Street to the west (**Figure 2**). The site currently operates as a hospital and is in a predominately residential and rural area of Temora. The Temora Hospital currently provides the following services:

- 28 beds
- emergency department
- maternity
- palliative care
- operating theatre (1)
- staff accommodation.

The site identification details are provided in **Table 1**.

Table 1: Site identification details (adapted from JK Environments 2023c)

Attribute	Description	
Current site owner	Health Administration Corporation	
Site address	16-189 Loftus Street, Temora, NSW	
Lot and Deposited Plan (DP)	Lot 2, DP 582392	
Current land use	Hospital	
Proposed land use	Hospital	
Local government area	Temora Shire Council	
Current zoning	SP2: Infrastructure	
Site area	Approximately 31,770 m ²	

AERIAL IMAGE SOURCE: MAPS.AU.NEARMAP.COM

Figure 2: Site location (sourced from JK Environments 2023c)

This plan should be read in conjunction with the Environmental report.

JKEnvironments

The site currently comprises buildings which are mainly located in the northern and central portion of the site, including (JK Environments 2023c):

- the main hospital building, which is a three-storey building of brick and fibre-cement construction
- the nurse's accommodation building, which is a two-storey building of brick and metal construction
- several single storey buildings (ancillary services, maintenance, workshop) typically of brick and metal construction.

Other current site features include paved driveways for vehicle access, on-grade car parks, footpaths, gardens and grassed areas with medium to large trees and shrubs. The DSI reported that sensitive environments such as wetlands, ponds, creeks or extensive areas of native vegetation are not located on the site or in the immediate surrounds (JK Environments 2023c).

Detailed design plans for the redevelopment of the site have not been provided. However, it is understood that redevelopment will include an extension to the current main building and new car parking areas as shown in **Figure 3**. It is also understood that there will be no on-site staff accommodation during or at the completion of the redevelopment.

The land uses in the areas surrounding the site include (JK Environments 2023c):

- north low density residential, the Temora campus of TAFE NSW and a residential care facility (Whiddon Group)
- south Loftus Street and low density residential
- east utilities infrastructure (transmission tower, substation, pumping station and reservoirs)
 with vacant agricultural land (possibly grazing) beyond
- west residential care facility (Whiddon Group) with Gloucester Street beyond.

The PSI included details of the site history, which indicated that the site was used for residential purposes and possibly agriculture (e.g. grazing) until the 1930s when the Temora Hospital was constructed. The site has been operating as a hospital since 1940 (JK Environments 2023a).

Figure 3: Existing site plan and proposed site plan (provided by Capital Insight)

2.3 Environmental setting

This section summarises the environmental setting at and around the site. The information is sourced from the DSI (JK Environments 2023c) unless otherwise stated.

2.3.1 **Climate**

Key meteorology data for the weather station at the Temora Airport sourced for the DSI indicated the following (JK Environments 2023c):

- the highest mean rainfall occurred in November, with a total of 58.4 mm
- the lowest mean rainfall occurred in May, with a total of 32.5 mm
- in the week leading up to the fieldwork undertaken for the DSI, less than 2 mm of rainfall was recorded.

2.3.2 Topography

The regional topography is characterised by gently undulating terrain. The site is located towards the crest of a gently undulating slope which grades down towards the southwest at approximately 5°. Parts of the site appear to have been levelled to account for the slope and accommodate the existing site features (JK Environments 2023a).

2.3.3 Regional geology

Regional geology information presented in the PSI and summarised in the DSI indicated that the site is underlain by Temora Volcanics comprising andesite, trachyandesite, latite and basaltic andesite, though may be obscured by quaternary aged alluvial soils. The alluvial soils are likely present on the lower slopes and toe of the hillside and not within the site boundaries. The PSI encountered shallow fill soils and residual silty clay overlying andesite bedrock at the site.

2.3.4 Acid sulfate soils

The PSI indicated that the site is not located in an acid sulfate soil risk area according to the risk maps prepared by the Department of Land and Water Conservation (JK Environments (2023a).

2.3.5 Hydrogeology

The DSI summarised the hydrogeology information presented in the PSI as follows:

- the subsurface conditions at the site consist of relatively low permeability (residual) soils overlying shallow bedrock. The potential for viable groundwater abstraction and use of groundwater under these conditions is considered to be low. There is also a reticulated water supply in the area and consumption of groundwater is not expected to occur
- the nearest registered bore is located 330 m west of the site and is registered for recreational purposes
- considering the local topography and surrounding land features, groundwater is anticipated to flow towards the northwest.

The depth to groundwater at the site was not reported in either the PSI or DSI. However, both investigations noted that groundwater was not encountered in the soil boreholes and test pits during the investigations (up to approximately 1.5 m below ground level (bgl) at some locations). There are

no groundwater wells on the site, and it is understood that groundwater will not be used as part of the construction/redevelopment.

2.3.6 Surface water bodies

The PSI reports that there are no surface water bodies in the immediate vicinity of the site. The closest surface water body is an unnamed dam located upgradient from the site approximately 320 m to the northeast. The nearest downgradient surface water body is Trigalong Creek located approximately 3.8 km west of the site. This creek turns into Lake Centenary approximately 4 km northwest of the site. Based on the distance from the site, these water bodies are not expected to be impacted by water migrating from the site (JK Environments 2023a).

2.4 Potential sources of contamination

The DSI provided a list of potential contaminating sources and areas of environmental concern (AEC) for the site (summarised in **Table 2**).

Table 2: Potential (or known) contamination sources and areas of environmental concern (AEC) for the site (adapted from JK Environments 2023c)

Source/AEC	Potential contaminants
Fill material	Heavy metals
The site has been historically filled to achieve the existing levels and	Petroleum hydrocarbons
this fill material may have been imported from a range of sources. The	Polycyclic aromatic hydrocarbons (PAHs)
PSI identified filling to depths of approximately 0.2 m below bgl to 1.1 m	Organochlorine pesticides (OCPs)
bgl. The fill contained inclusions of demolition rubble, including metal	Organophosphate pesticides (OPPs)
fragments, fibre cement fragments (FCF) and asbestos containing	Polychlorinated biphenyl (PCBs)
material (ACM).	Asbestos
Maintenance workshop	Heavy metals
The site includes a maintenance workshop. It is possible that	Petroleum hydrocarbons
leaks/spills and/or releases of oil, solvents and fluids may have	PAHs
occurred.	
On-site generator	Petroleum hydrocarbons
A back-up generator is located to the west of the main hospital building.	PAHs
Minor leaks and/or spills of fuels/oils may have occurred during	
maintenance or use.	
Historical agricultural use	Heavy metals
Prior to 1938, the site was likely used for agricultural purposes (e.g.	Petroleum hydrocarbons
grazing). This may have resulted in contamination across the site via	PAHs
use of machinery, application of pesticides and building/demolition of	OCPs
various structures. Irrigation pipes made from asbestos may also be	OPPs
associated with this source.	Asbestos
<u>Use of pesticides</u>	Heavy metals
Pesticides have been used beneath the buildings and/or around the	OCPs
site.	
Hazardous building materials	Asbestos
Hazardous building materials may be present as a result of former	Lead
building and demolition activities. These materials have also been	PCBs
identified by various HAZMAT surveys within the existing	
buildings/structures on the site.	
On-site incinerator of hospital waste	Heavy metals
The site has been used as a hospital since at least 1940. An incinerator	PAHs
is located within the boiler room. Waste generated from the incinerator	
could have been disposed of on-site during the earlier years of	
operations, although there is no evidence identified to confirm this.	

2.5 Nature and extent of contamination

The investigations undertaken at the site to date have focused on soil. As part of the PSI (JK Environments 2023a), soil samples were collected from 12 locations at the site (BH1 to BH12 and TP13 to TP16) (**Figure 4**) between 2 and 5 May 2023. This sampling program was designed as a preliminary intrusive investigation. Soil samples were collected from the fill and natural profiles based on field observations at a range of depths up to 1.5 m bgl. Soil samples were analysed for heavy metals, total recoverable hydrocarbons (TRHs), benzene, toluene, ethylbenzene and xylenes (BTEX), PAHs and asbestos (noting that not all samples were analysed for all chemicals).

For the DSI (JK Environments 2023c), soil samples were collected from 63 locations at the site (BH/TP101 to BH/TP163) (**Figure 4**) between 6 and 13 September 2023. The sampling locations were based on a grid pattern with sampling locations judgementally selected from within each grid. Surface soil samples were collected from each sampling location, with depth samples collected from a sub-set of locations (up to 1.4 m bgl dependant on the depth of the borehole or test pit). Soil samples were analysed for heavy metals, PAHs, OCPs, OPPs, PCBs, TRHs, BTEX and asbestos (noting that not all samples were analysed for all chemicals).

The chemicals reported in soil samples above the limit of reporting (LOR) in at least one sample from the PSI or DSI are shown in **Table 3** (all data in **Appendix A**). This included heavy metals, PAHs and petroleum hydrocarbons (measured as total recoverable hydrocarbons, TRHs²). The depth of the maximum concentrations ranged across the site. However, in many cases, the maximum concentrations were reported at or near the soil surface. This has implications for potential exposure as people are most likely to be exposed to surface soil rather than soil at depth.

The concentrations of OCPs, OPPs, PCBs and BTEX were below the LOR in all samples that were analysed for these chemicals.

Asbestos was identified in fibre cement fragments (FCF) during the PSI and DSI. The asbestos results are not considered in this HHERA as it is understood that this aspect is being managed separately through a site Asbestos Management Plan.

The toxicity characteristic leaching procedure (TCLP) was undertaken on a sub-set of soil samples during the PSI and DSI. This was done to assist with the soil waste classification and involved analysis of lead and PAHs. TCLP was only undertaken on a sub-set of soils based on concentration, consistent with the Waste Classification Guidelines (NSW EPA 2014). TCLP uses acidic pH to mimic landfill leachate which will overpredict metal leaching in the natural soil environment (i.e. more metals will leach at acidic pH compared to neutral pH). Even under these leaching conditions, the maximum concentrations of lead and PAHs in the TCLP leachates were relatively low at 0.3 mg/L and 0.0086 mg/L, respectively. This indicates a low potential for these chemicals to leach from the soil.

_

² TRHs are reported for four different fractions grouped by the number of carbons. The fractions are referred to as F1, F2, F3 and F4, which refer to C6-C19 (excluding BTEX), >C10-C16 (excluding naphthalene), >C16-C34 and >C34-C40, respectively. TRH F1 and TRH F2 are considered volatile. Whereas TRH F3 and TRH F4 are not volatile.

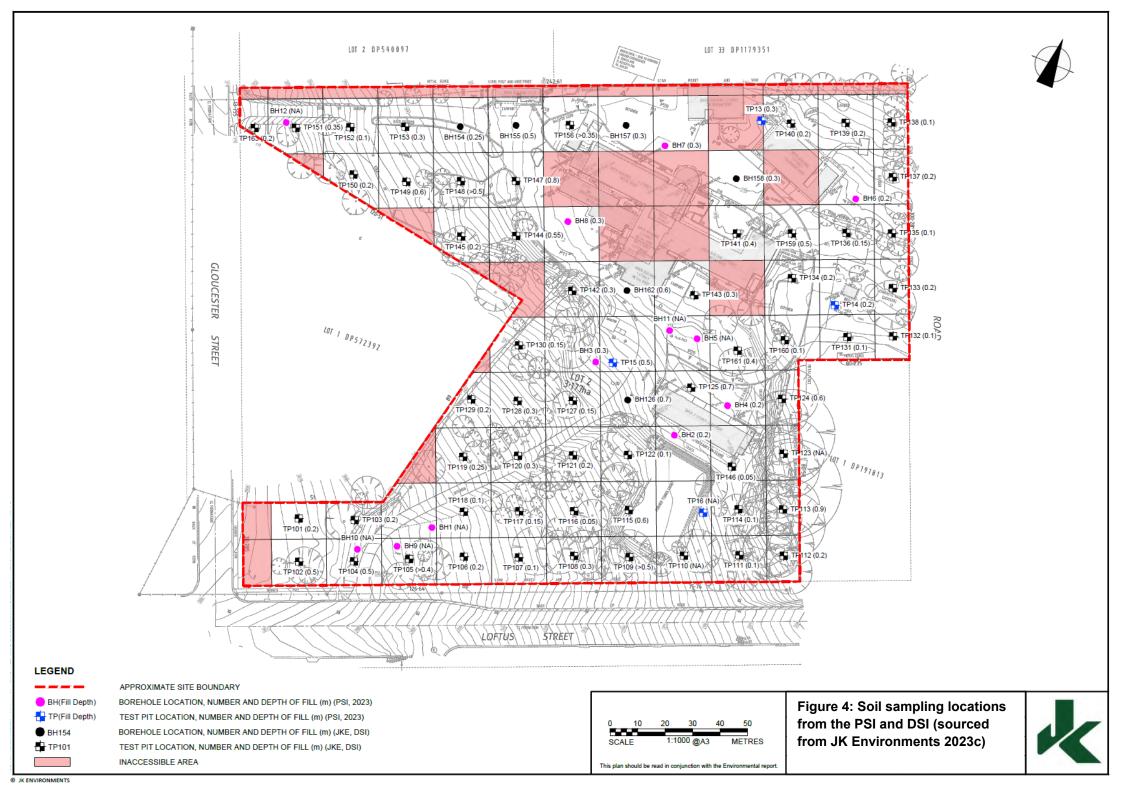


Table 3: Summary of chemical concentrations in soil from previous site investigations (only chemicals with at least one sample above the limit of reporting are listed)

Chemical	Preliminary site investigation ¹		Detailed site investigation ²					
	No. of samples	Minimum conc.	Maximum conc.	Location (depth m) of maximum	No. of samples	Minimum conc.	Maximum conc.	Location (depth m) of maximum
		(mg/kg)	(mg/kg)			(mg/kg)	(mg/kg)	
Heavy metals								
Arsenic	30	<4	15	TP14 (0-0.1)	89	<4	23	TP115 (0-0.1)
Cadmium	30	<0.4	<0.4	na	89	<0.4	0.4	TP133 (0-0.1)
Chromium ³	30	10	91	BH3 (0.2-0.3)	89	11	140	TP123 (0-0.1)
Copper	30	12	490	TP13 (0.5-0.6)	89	4	500	TP146 (0.3-0.4)
Lead	30	1	170	TP14 dup (0-0.1)	90	3	470	TP131 (0-0.1)
Mercury	30	<0.1	0.7	TP15 (1.3-1.5)	89	<0.1	0.5	TP115 (0-0.1)
Nickel	30	2	18	BH2 (0.3-0.5)	89	1	30	TP123 (0-0.1)
Zinc	30	7	140	TP14 dup (0-0.1)	89	3	400	TP139 (0.2-0.3)
Polycyclic aromatic hydrocarbo	ns (PAHs)							
Total PAHs 4	30	<0.05	85	BH3 (0.3-0.5)	89	< 0.05	200	TP155 (0.2-0.5)
Carcinogenic PAHs 5	30	<0.5	7.7	BH3 (0.3-0.5)	89	<0.5	24	TP153 (0-0.1)
Benzo(a)pyrene	30	< 0.05	5.4	BH3 (0.3-0.5)	89	< 0.05	15	TP153 (0-0.1)
Naphthalene	30	<1	2	BH3 (0.3-0.5)	89	<1	<1	na
Total recoverable hydrocarbons (TRHs)								
TRH F1 (C6-C10)	30	<25	<25	na	89	<25	71	TP116 dup (0-0.05)
TRH F2 (>C10-C16)	30	<50	<50	na	89	<50	210	TP144 (0-0.1)
TRH F3 (>C16-C34)	30	<100	320	BH3 (0.3-0.5)	89	<100	1,100	TP144 (0-0.1)
TRH F4 (>C34-C40)	30	<100	230	BH3 (0-0.1)	89	<100	440	TP144 (0-0.1)

Notes:

- 1 = JK Environments (2023a)
- 2 = JK Environments (2023c)
- 3 = total chromium concentration (CrIII+CrVI)
- 4 = total PAH concentration is the sum of the 16 PAHs most commonly reported for contaminated sites (WHO 1998)

na = not available as all concentrations were <LOR

^{5 =} concentration of the eight carcinogen PAHs as the benzo(a)pyrene toxic equivalence (BaP TEQ). The BaP TEQ is calculated by multiplying the concentration of each carcinogen PAH in the sample by its toxic equivalency factor (TEF)

2.6 Conceptual site model

A key aspect of a risk assessment is the development of a suitable CSM specific to the site. The CSM describes the source(s) of contamination, the pathway(s) those contaminants may migrate through different environmental media and the populations (human or ecological) that may be exposed to the contamination.

The site is currently used as a hospital and will continue to be used as a hospital following the redevelopment. This HHERA considers potential exposure to chemicals during the redevelopment and following redevelopment. The CSM described in this section is relevant to this land use and does not consider any potential changes to land use at the site.

A range of potential sources of contamination were identified at the site as part of the PSI and DSI, which are summarised in **Section 2.4**. Soil sampling investigations undertaken as part of the PSI and DSI identified a range of chemicals in soil at the site, including, heavy metals, PAHs and petroleum hydrocarbons. Some of these chemicals, particularly heavy metals, are naturally occurring in soils and all soils will contain some level of naturally occurring heavy metals. Other chemicals may be present at the site from current or historical activities at the site, or the importation and use of fill material.

Based on the proposed site plan (**Figure 3**), the redevelopment will include extensions to the current main building at the site and car parking areas. This will reduce the potential exposure that people or ecological organisms will have to the soil. However, there will still be large areas of the site that are grassed and have other vegetation (trees and shrubs). Therefore, there is still the potential for exposure. There are walking paths at the site, which will be retained, and it is likely that most people moving through the site will remain on the walking paths. It is possible that at times, some people may sit on the grassed areas, for example, hospital staff during lunch breaks.

The following groups of people may be present on the site and could be exposed to chemicals in the soil:

- construction workers during the redevelopment
- intrusive maintenance workers following the redevelopment
- site gardeners and landscapers
- hospital staff during and after the redevelopment
- patients at the hospital and visitors (including volunteer workers) who may walk in the hospital grounds during and after the redevelopment
- the local community (including residents at the residential care facility) who may take walks through the hospital grounds during and after the redevelopment.

It is understood that while the site currently provides some staff accommodation, no staff accommodation will occur on the site during or after the redevelopment.

In the outdoor areas of the site, people may have direct contact with the soil, which could lead to dermal exposure to soil contaminants and incidental ingestion of soil. There is also the possibility of inhalation of dust generated from the soil. Where volatile chemicals are present (e.g. TRH F1 and TRH F2), there is also the potential for inhalation of vapours. Where people are working in buildings at the site, there is the potential for volatile chemicals in soil (where present) to migrate into the

indoor air where people could be exposed. All of these potential exposures to people at the site have been considered in this HHERA.

The ecological organisms that may be exposed to the soil contamination include vegetation, soil invertebrates (e.g. earthworms), soil microorganisms (e.g. nitrifying soil bacteria) and transient animals (e.g. birds and mammals). Exposure to these organisms will only occur in areas without buildings, carparks or driveways.

Groundwater at the site has not been encountered in any of the site soil investigations. This has included soil test pits and bore holes up to 1.5 m bgl. Exposure to groundwater is considered unlikely to be relevant for this CSM or HHERA based on the following:

- many of the chemicals reported in the soil are likely to show low mobility with water due to their chemical properties (e.g. PAHs are known to bind very strongly to soils and not migrate considerable distances with water)
- there are no groundwater wells on the site, and it is understood that groundwater will not be used as part of the construction/redevelopment
- relatively low permeability soils are present in the subsurface at the site (and likely in the broader regional area) and viable groundwater abstraction and use under these conditions is considered to be low (JK Environments 2023a)
- the nearest registered groundwater bore is located 330 m west of the site and is registered for recreational purposes (JK Environments 2023a)
- there are no surface water bodies in the vicinity of the site, which means groundwater at the site is unlikely to discharge into surface water.

Based on the list above, potential exposure to site contaminants via the groundwater is an incomplete pathway. Therefore, groundwater has not been considered in this HHERA.

Section 3. Screening level assessment

3.1 General

This section presents a screening level (tier 1) assessment of the soil data for the site. The purpose of this assessment is to identify if chemicals reported in soil at the site are present at concentrations above national guidelines. If concentrations are above national guidelines, this does not necessarily mean that there is a risk to human health or ecosystem. Exceedances of guideline values warrant further site-specific assessment (i.e. further assessment specific to the land use for the proposed redevelopment of the Temora Hospital). If chemicals are present at concentrations below national guidelines, no further assessment is required, and risks are considered acceptable based on Australian guidance.

3.2 Screening assessment for soil chemical concentrations

The maximum concentrations of chemicals reported in soil from the PSI and DSI (**Section 2.5**) were compared to risk-based screening level guidelines in national guidance documents for the protection of human health and ecosystems. The list of chemicals included in this screening assessment were those reported above the LOR in at least one sample as part of the PSI or DSI (see **Table 3**). Where guidelines were not available from Australian sources, international guidelines were adopted for the screening assessment.

3.2.1 Human health screening assessment

The human health screening level assessment is summarised in **Table 4**. The guidelines adopted for this assessment were as follows:

- ASC NEPM health investigation levels (HILs) (NEPC 1999 amended 2013a) the ACS NEPM (1999) provides risk based health investigation levels (HILs) for selected organic and inorganic chemicals in soils. Different levels are provided for a variety of generic exposure settings including residential (low and high density), public open space and commercial/industrial land uses. The HILs were developed to be protective of human health and do not consider potential ecological concerns. The maximum soil concentrations at the site were compared to the commercial/industrial HILs (HIL-D). These values assume that an adult is at the site 240 days/yr (i.e. working days of the year), is outside on the site for 1 hour each of those days, where they incidentally ingest soils (25 mg/day) and get soil on their skin. These assumptions are considered to be conservative for how most people will use and have access to the site (i.e. construction/intrusive workers, gardeners, hospital staff, patients and visitors). For an additional level of conservatism, the maximum concentrations were also compared to the public open space HILs (HIL-C). These HILs are protective of children who may play in an area every day of the year and incidentally ingest soil (50 mg/day) and get soil on their skin. These assumptions are considered conservative for people who may use the hospital grounds for recreational purposes.
- ASC NEPM health screening levels (HSLs) (NEPC 1999 amended 2013a) the ACS NEPM provides risk based health screening levels (HSLs) for vapour intrusion based on soil concentrations. These are available for the same land uses as discussed above for the HILs but only relate to volatile chemicals (e.g. TRH F1 and TRH F2). For residential and commercial/industrial land uses, these relate to potential risks from vapour intrusion into

buildings. For public open space, these relate to potential inhalation risks in outdoor air. Where the soil concentration cannot be high enough to generate a soil vapour concentration that would pose a risk, the HSLs are listed as 'NL', which stands for 'not limiting'. Where these HSLs are relevant (i.e. for volatile chemicals) and are not 'NL', the values for public open space (HSL-C) and commercial/industrial (HSL-D) were adopted for the screening assessment.

CRC CARE direct contact HSLs (CRC CARE 2011) – the Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE) has derived direct contact HSLs for petroleum hydrocarbons. These have been developed for the same generic land uses as the HILs, as well as intrusive maintenance workers. For this screening assessment the CRC CARE direct contact HSLs have been used for public open space (HSL-C) and commercial/industrial (HSL-D). The HSL-D values are all lower than those developed for intrusive maintenance workers and are therefore protective of this group of people at the site.

Table 4: Human health screening assessment for soil at the Temora Hospital

Chemical	Maximum	Investigation	Location (depth	Screening guideline (mg/kg)	
	conc. (mg/kg)		m)	HIL-C/HSL-C	HIL-D/HSL-D
Heavy metals					
Arsenic	23	DSI	TP115 (0-0.1)	300 ^{N1}	3,000 ^{N2}
Cadmium	0.4	DSI	TP133 (0-0.1)	90 ^{N1}	900 N2
Chromium	140	DSI	TP123 (0-0.1)	300 ^{N1 *}	3,600 N2 *
Copper	500	DSI	TP146 (0.3-0.4)	17,000 ^{N1}	240,000 N2
Lead	470	DSI	TP131 (0-0.1)	600 ^{N1}	1,500 N2
Mercury	0.7	PSI	TP15 (1.3-1.5)	80 ^{N1}	730 N2
Nickel	30	DSI	TP123 (0-0.1)	1,200 N1	6,000 N2
Zinc	400	DSI	TP139 (0.2-0.3)	30,000 N1	400,000 N2
Polycyclic aromatic	hydrocarbons (PA	Hs)			
Total PAHs	200	DSI	TP155 (0.2-0.5)	300 N1	4000 N2
Carcinogenic PAHs	24	DSI	TP153 (0-0.1)	3 ^{N1}	40 N2
Total recoverable hydrocarbons (TRHs)					
TRH F1 (C6-C10)	71	DSI	TP116 dup (0-0.05)	5,100 ^{C1}	260 N2,V
TRH F2 (>C10-C16)	210	DSI	TP144 (0-0.1)	3,800 ^{C1}	20,000 ^{C2}
TRH F3 (>C16-C34)	1,100	DSI	TP144 (0-0.1)	5,300 ^{C1}	27,000 ^{C2}
TRH F4 (>C34-C40)	440	DSI	TP144 (0-0.1)	7,400 ^{C1}	38,000 ^{C2}

Notes:

N1 = NEPM HIL C

N2 = NEPM HIL D

V = vapour intrusion

C1 = direct contact HSL-C from CRC CARE (2011)

C2 = direct contact HSL-D from CRC CARE (2011)

Based on the human health screening assessment (**Table 4**), none of the maximum concentrations of any chemicals reported in the soil at the site exceed the commercial/industrial screening criteria. This indicates that the risk posed to construction workers, intrusive maintenance workers, gardeners, hospital staff, patients and visitors are acceptable based on Australian guidance. These do not require further assessment.

The concentrations of all chemicals were also below the public open space screening criteria (HIL-C/HSL-C), with the exception of carcinogenic PAHs. It is noted that the assumptions used to derive

^{* =} HILs for chromium are based on hexavalent chromium (CrVI)

the public open space HILs/HSLs are likely to be highly conservative for how people will use this site. However, the potential risks from carcinogenic PAHs are further assessed in this HHERA.

Where concentrations of chemicals exceed the screening level guidelines, the ASC NEPM provides a statistical test that can be used as the first step in evaluating soil contaminant concentrations. The test requires that the 95UCL concentration (i.e. the 95% upper confidence limit of the mean) be below the relevant guideline values (e.g. HIL or HSL), that the standard deviation be below half of the relevant guideline value and that the concentration in no single sample is above 250% of the relevant guideline value. For this dataset, the maximum concentration of carcinogenic PAHs is 24 mg/kg, which is above 250% of the guideline value (i.e. HIL-C, 3 mg/kg). Based on this, the potential exposure to carcinogenic PAHs for people using the site for recreational purposes is assessed in more detail in **Section 4**.

3.2.2 Ecological screening assessment

The ecological screening level assessment is summarised in **Table 5**. The guidelines adopted for this assessment were as follows:

- ACS NEPM ecological investigation levels (EILs) (NEPC 1999 amended 2013a) the ASC NEPM (1999) provides risk based ecological investigation levels (EILs) for selected metals and organic chemicals in soils. These levels are applicable for assessing potential risks to terrestrial ecosystems and are provided for generic land uses, including, areas of ecological significance, urban residential/public open space and commercial/industrial. For some metals, the EILs have been derived to allow for the effects of soil type on the bioavailability. The EILs for these metals can be varied based on soil properties, including, soil pH, cation exchange capacity (CEC) and clay content. For this screening level assessment, the soil properties reported in the DSI (JK Environment 2023c) were used: pH = 7.3, CEC = 20 cmol+/kg and clay content = 39%. The NEPM toolbox provides a spreadsheet to derive site-specific EILs based on these properties. The EIL derivation for this site is provided in **Appendix B**. The EILs for urban residential/public open space were adopted for this screening assessment.
- ACS NEPM ecological screening levels (ESLs) (NEPC 1999 amended 2013a) the ACS NEPM provides ecological screening levels (ESLs) for selected petroleum hydrocarbons and hydrocarbon fractions. These levels are also applicable for assessing potential risks to terrestrial ecosystems and broadly apply to coarse- and fine-grained soils for the same land uses as discussed above for the EILs. The ESLs for urban residential/public open space were adopted for this screening assessment.
- Canadian Council of Ministers of the Environment ³ for chemicals that do not have ecological guidelines in the ASC NEPM, values for this screening assessment were adopted from the Canadian Council of Ministers of the Environment (CCME). This source was selected as the derivation process is similar to the Australian framework for deriving EILs (NEPC 1999 amended 2013c). The CCME soil quality guidelines (SQGs) for residential and parklands were adopted. In the case of benzo(a)pyrene (BaP), the CCME SQG was adopted

³ https://ccme.ca/en/summary-table

for this screening assessment instead of the ASC NEPM ESL. The reason for this was because the Australian ESL for BaP is based on a previous CCME SQG which used a very conservative derivation technique (see (Warne 2013) for more details). The CCME SQG for BaP has been updated using a more detailed derivation process that is more consistent with the Australian EIL derivation framework (NEPC 1999 amended 2013c).

Table 5: Ecological screening assessment for soil at the Temora Hospital

Chemical	Maximum conc. (mg/kg)	Investigation	Location (depth m)	Screening guideline (mg/kg) EIL/ESL (urban residential/public open space)		
Heavy metals						
Arsenic	23	DSI	TP115 (0-0.1)	100 ^{N1}		
Cadmium	0.4	DSI	TP133 (0-0.1)	10 ^C		
Chromium	140	DSI	TP123 (0-0.1)	630 ^{N1 *}		
Copper	500	DSI	TP146 (0.3-0.4)	230 ^{N1 *}		
Lead	470	DSI	TP131 (0-0.1)	1,100 ^{N1}		
Mercury	0.7	PSI	TP15 (1.3-1.5)	6.6 ^C		
Nickel	30	DSI	TP123 (0-0.1)	270 ^{N1 *}		
Zinc	400	DSI	TP139 (0.2-0.3)	770 ^{N1 *}		
Polycyclic aromatic hy	Polycyclic aromatic hydrocarbons (PAHs)					
Total PAHs	200	DSI	TP155 (0.2-0.5)	na		
Benzo(a)pyrene	15	DSI	TP153 (0-0.1)	20 ^C		
Total recoverable hydrocarbons (TRHs)						
TRH F1 (C6-C10)	71	DSI	TP116 dup (0-0.05)	180 ^{N1}		
TRH F2 (>C10-C16)	210	DSI	TP144 (0-0.1)	120 ^{N1}		
TRH F3 (>C16-C34)	1,100	DSI	TP144 (0-0.1)	300 ^{N1}		
TRH F4 (>C34-C40)	440	DSI	TP144 (0-0.1)	2,800 ^{N1}		

Notes:

N1 = NEPM EIL-C

C = CCME residential/parkland SQG

na = not available

Based on the ecological screening assessment (**Table 5**), none of the maximum concentrations exceed the adopted screening level guidelines, except for TRH F2 (>C10-C16). However, it is noted that across both the PSI and DSI 119 primary samples were analysed for TRHs and only two of these samples were above the adopted screening level guideline. In addition, the maximum concentration was 175% of the adopted guideline value (i.e. <250%). It is also noted that the sampling locations surrounding the location where the maximum concentration was detected (i.e. TP144) were all below the LOR indicating that the concentrations of TRHs in this area are not widespread. Based on the low frequency of exceedances, the low level of exceedances and the limited distribution of contamination, the potential ecological risks from TRH F2 (>C10-C16) do not require further investigation. Based on this screening assessment, the ecological risks at the site are acceptable based on Australian guidance.

^{* =} EIL derived using site-specific soil properties (**Appendix B**)

Section 4. Detailed assessment – carcinogenic PAHs

4.1 General

This section provides a detailed (tier 2) assessment for the potential risk to human health from carcinogenic PAHs in soil at the site. It includes two components to quantitively assess the potential risk to people at the site: (i) toxicity summary for benzo(a)pyrene (BaP) and carcinogenic PAHs and (ii) calculation of a site-specific soil screening criteria based on the way people are likely to use Temora Hospital. The detailed assessment focuses on potential risks from carcinogenic PAHs for people using the site for recreational purposes as this is the only exposure that warranted further assessment based on the screening assessment (**Section 3**). The risks to all other potentially exposed populations (people and ecosystems) were concluded to be acceptable based on the outcomes of the screening level assessment.

4.2 Toxicity of benzo(a)pyrene and carcinogenic PAHs

4.2.1 General

Several comprehensive reviews of PAHs and BaP in the environment and toxicity to humans are available (ATSDR 1995; CCME 2008; USEPA 2017; WHO 1998). PAHs are a large group of organic compounds with two or more fused aromatic rings made up of carbon and hydrogen atoms. PAHs are formed from incomplete combustion of organic materials such as processing of coal, crude oil, combustion of natural gas, refuse, vehicle emissions, heating, cooking and tobacco smoking as well as natural processes including carbonisation. A natural background level is due to PAH production in plant species. Because of such widespread sources, PAHs are present almost everywhere. Food is considered to be the major source of human exposure to PAHs due to their formation during cooking or from atmospheric deposition of PAHs on grains, fruits and vegetables (WHO 1998).

There are several hundred PAHs, including derivatives of PAHs. Some of these are known or probable/possible human carcinogens. The best known (and studied) PAH is BaP. A detailed toxicity summary for BaP (and carcinogenic PAHs) is provided in **Appendix C**.

4.2.2 Toxic equivalence factor approach for carcinogenic PAHs

The major approach advocated by regulatory agencies such as the NEPC (Fitzgerald, D.J. 1991, 1998; Fitzgerald, D. James, Robinson & Pester 2004; NEPC 1999 amended 2013d), California EPA (CEPA 1999), Netherlands (Baars et al. 2001), the UK Environment Agency (UK DEFRA and EA 2002), Canada (CCME 2008, 2010) and USEPA (USEPA 2014) for assessing the human health risks of PAH-containing mixtures involves the use of 'toxicity equivalence factors' (TEFs). This approach relates the toxicity of other (potentially carcinogenic) individual PAHs to that of BaP, the most widely studied carcinogenic PAH.

It is not currently possible to develop different relative potency schemes across different exposure routes (oral, dermal, inhalation), owing to a lack of data. Hence, the TEFs adopted have been applied for all routes of exposure for the carcinogenic PAHs assessed. Application of the TEFs is relevant to the assessment of PAHs that are considered to be carcinogenic (known or probably/possible). Other PAHs that are not carcinogenic should be assessed separately on an individual basis using a threshold approach.

The TEFs that have been adopted for the assessment of carcinogenic PAHs are listed in **Table 6**. These TEFs were presented by the CCME and are consistent with the WHO recommendations, with minor modifications (CCME 2010; WHO 1998). These TEFs were also used in the derivation of the HILs in the ASC NEPM. Using the TEF approach, concentrations of carcinogenic PAHs in soil are presented as BaP toxic equivalence (TEQs).

Table 6: Toxicity equivalence factors (TEF) for carcinogenic polycyclic aromatic hydrocarbons (PAHs) and carcinogenic classifications

PAH	IARC classification ¹	US EPA classification ²	TEF	
Benzo(a)anthracene	2B	B2	0.1	
Benzo(a)pyrene	1	B2	1	
Benzo(b+j)fluoranthene	2B	B2	0.1	
Benzo(k)fluoranthene	2B	B2	0.1	
Benzo(g,h,i)perylene ³	3	D	0.01	
Chrysene	2B	B2	0.01	
Dibenz(a,h)anthracene	2A	B2	1	
Indeno(1,2,3-cd)pyrene	2B	B2	0.1	

Notes:

4.2.3 **Background exposure**

Intakes of BaP from sources other than soil have been considered to range from 0.166-1.6 µg/day with intakes derived from food identified as the most significant (Fitzgerald, D.J. 1991). In 2006, the WHO Joint Expert Committee on Food Additives (JECFA) reviewed potential intakes and health effects of PAHs in food. They found that intake of BaP was on average 0.28 µg/day with a high level intake of 0.7 µg/day (WHO 2006).

4.2.4 **Toxicity reference values**

A detailed review of available toxicity reference values (TRVs) for BaP is provided in Appendix C. Based on this review, the following TRVs have been adopted for this site:

- oral TRV (TRV₀) = 0.233 (mg/kg/day)⁻¹ (MfE 2011) for oral and dermal exposures
- dermal absorption factor (DAF) = 0.06 (6%) (MfE 2011)
- oral bioavailability = 100%
- inhalation TRV = 0.6 (mg/m3)⁻¹ (USEPA 2017).

The oral TRV listed above, 0.233 (mg/kg/day)⁻¹ is different to the oral TRV adopted in the derivation of the HILs in the ASC NEPM, i.e. 0.5 (mg/kg/day)-1. The reason for this is discussed in **Appendix C** and the implications in terms of this HHERA are discussed in Section 4.4.

For the assessment of exposures by young children (<2 years), a 10-fold age adjustment was applied to account for higher sensitivity when exposure occurs in early life. This approach is consistent with the derivation of HILs in the ASC NEPM.

¹ International Agency for Research on Cancer (IARC): 1 = human carcinogen, 2A = probable human carcinogen, 2B =

possible human carcinogen, 3 = not classifiable ² United Stated Environmental Protection Agency (US EPA): A = human carcinogen, B1/2 = probable human carcinogen, C = possible human carcinogen, D = not classifiable

³ benzo(g,h,i)perylene is included due to positive findings in genotoxicity studies (WHO 1998). Note there are insufficient data available to determine carcinogenicity

4.3 Calculation of a site-specific soil screening criteria

Considering the only exceedance of the human health screening guidelines adopted for the site which warranted further detailed assessment was for carcinogenic PAHs (**Section 3**), the detailed assessment was done by adjusting the carcinogenic PAHs HIL used in the screening level assessment. This was done by applying site-specific assumptions about how people may be exposed to soil at the site using the HIL spreadsheets available from the ASC NEPM Toolbox (https://www.nepc.gov.au/nepms/assessment-site-contamination/toolbox). This approach results in a site-specific HIL that can be compared to the measured concentrations at the site.

As discussed in **Section 3.2.1**, the public open space HILs (HIL-C) which were used in the screening level assessment are likely to be highly conservative considering how people may use the hospital grounds for recreational purposes. The HIL-C for carcinogenic PAHs was the only screening criteria that was exceeded in this HHERA and required further detailed assessment (**Table 4**). The HIL-C in the ASC NEPM are protective of children who frequently use a playground where they may be exposed to contaminants in the soil. The values were derived using the following key assumptions (NB, there are a number of assumptions used to derive the HILs and just the key ones for the purposes of this HHERA are listed below):

- a child uses a playground 365 days/year
- every day in the playground, a child incidentally ingests 50 mg of soil and gets soil adhered to 2,700 cm² of skin (i.e. 44% of their total skin surface area).

There is no playground at the site (existing or proposed). Therefore, the assumptions listed above will be overconservative for the site. The main type of recreational activity that is likely to occur at the site is walking, which would in most cases be contained to the walking paths. There is the possibility that people (adults and children) may sit on the grassed areas, but this would likely occur at a much lower frequency.

The HIL spreadsheets in the ASC NEPM Toolbox include all of the default calculations/assumptions for the HILs for each land use (residential, public open space and commercial/industrial). This spreadsheet is publicly available and was used in this assessment to derive a site-specific HIL for carcinogenic PAHs by adjusting some of the parameters based on how people may use this site. **Table 7** summarises the default assumptions from the HIL-C calculation for parameters that were adjusted in this HHERA. In addition, the site-specific assumptions are also provided. These calculations were done for children (early-life) only as the most sensitive age group. Site-specific HILs based on exposure to young children will also be protective of older children and adults.

Table 7: Summary of default assumptions for the HIL-C calculations and site-specific assumptions that were used for this HHERA

Parameter	NEPM HIL-C default assumption	Site-specific assumption	Rationale for adjusting the assumption
Surface area of skin (child)	2,700 cm ² /day	2,434 cm ² /day	Skin surface area of a child that is assumed to be dirty every day, based on face, hands, forearms, lower legs and feet (MDEP 2002).
Soil-to-skin adherence factor (child)	0.5 mg/cm²/day	0.35 mg/cm ² /day	Weighted adherence factor for a child (MDEP 2002).
Soil/dust ingestion rate	50 mg/day	25 mg/day	Assumes people using the site for recreational purposes are likely to have a much lower incidental ingestion rate of soil than the default used for HIL-C
Exposure frequency	365 days/year	52 days/year	Assume people may undertake activities at the site that involve contact with soil once a week.

Using the exposure assumptions summarised in **Table 7**, and the TRVs listed in **Section 4.2.4**, the site-specific HIL for recreational use of the Temora Hospital site is 80 mg/kg. The adapted HIL spreadsheet including the site-specific assumptions is provided in **Appendix D**.

The maximum concentration of BaP TEQ reported at the site was 24 mg/kg. This is considerably lower than the site-specific HIL for recreational purposes. Based on this, the risks to people using the site for recreational purposes are acceptable based on Australian guidance. Therefore, risk management actions and a RAP are not warranted for the site.

4.4 Uncertainties

Uncertainties in any assessment refers to a lack of knowledge (that could be better refined through the collection of additional data/information) and is an important part of the risk assessment process. Assessment of uncertainty is a qualitative process that relates to the selection and rejection of specific data, estimates or scenarios in the risk assessment. In general, to compensate for uncertainty, conservative assumptions are often used that result in an overestimate rather than an underestimate of risk.

There is always some level of error in sampling and analysis of environmental samples. In addition, sampling involved collecting samples from discrete locations and inferring the level of contamination between these sampling points. The actual concentrations between these points cannot be guaranteed. This HHERA was based on the available soil data for the site. These data were collected across two sampling events (the PSI and the DSI) and provide good coverage of the site. Therefore, they are considered sufficiently representative of the contamination present in soil at the site. To account for any potential uncertainty in these concentrations, the maximum concentrations were primarily used in this HHERA. This is a very conservative way to assess the site data as it assumes that the maximum reported concentrations are present in soils across the site.

For this site, there is uncertainty around the exposure assumptions relating to how people may be exposed to soil contaminants. The detailed assessment involved adjusting several default assumptions from the ASC NEPM HILs. The site-specific assumptions adopted are likely to be conservative and therefore are likely to overestimate exposure to chemicals in soil at the site and risk.

The TRV adopted for oral and dermal exposures to BaP (and carcinogenic PAHs) in this HHERA was 0.233 (mg/kg/day)⁻¹ (MfE 2011). This TRV was used in **Section 4.3** to derive a site-specific HIL for BaP TEQ of 80 mg/kg. This adopted TRV is lower than the TRV used in the ASC NEPM for BaP (i.e. 0.5 (mg/kg/day)⁻¹) and therefore is less conservative. If the TRV used in the ASC NEPM is applied to the site-specific calculations in this HHERA, the resulting site-specific HIL is reduced to 40 mg/kg for BaP TEQ. This HIL is still above all of the reported concentrations of BaP TEQ at the site. Therefore, the different TRV for BaP has no influence on the conclusions of this HHERA.

Section 5. Conclusions and recommendations

This report presents a HHERA in relation to the presence of contamination in soil at Temora Hospital, 169-189 Loftus Street, Temora NSW (the 'site'). The site is currently proposed for redevelopment, which is in the detailed design phase. This HHERA was undertaken to support town planning activities for the Temora Hospital and to determine if a RAP is needed for the site to address potential risk issues.

A range of potential sources of contamination were identified at the site as part of a PSI and a DSI which were conducted to inform the redevelopment work. These sources relate to current and historical activities at the site, and the use of imported fill material.

Investigations done for the PSI and DSI included analysis of soil samples for a wide range of chemicals. The concentrations of most chemicals were below the limit of reporting (LOR). However, a range of heavy metals, polycyclic aromatic hydrocarbons (PAHs) and petroleum hydrocarbons were reported in the soils.

Based on the review of available information for the site, the following groups of people were identified as potentially being present at the site:

- construction workers during the redevelopment
- intrusive maintenance workers following the redevelopment
- site gardeners and landscapers
- hospital staff during and after the redevelopment
- patients at the hospital and visitors (including volunteer workers) who may walk in the hospital grounds during and after the redevelopment
- the local community (including residents at the adjacent residential care facility) who may take walks through the hospital grounds during and after the redevelopment.

The HHERA assessed potential risks to all of the groups listed above. This focused on potential direct exposure to chemicals in the soil, as well as exposure to vapours for volatile chemicals (where relevant). The HHERA also assessed potential ecological risks for terrestrial organisms (e.g. vegetation, soil invertebrates and microorganisms).

Based on the available data for the site, and considering the uncertainties identified, the following was concluded from the HHERA:

- human health risks are low and acceptable for all groups listed above
- ecological risks are low and acceptable.

Based on the data provided and the outcomes of the HHERA, risk management actions and a RAP are not warranted for the site.

Section 6. References

ANZG 2018, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, A joint initiative of the Australian and New Zealand Governments in partnership with the Australian state and territory governments, viewed August 2018, http://www.waterquality.gov.au/anz-guidelines>.

ATSDR 1995, *Toxicological Profile for Polycyclic Aromatic Hydrocarbons (PAHs), (Update)*, Agency for Toxic Substances and Disease Registry,

Baars, AJ, Theelen, RMC, Janssen, PJCM, Hesse, JM, Apeldorn, MEv, Meijerink, MCM, . . . Zeilmaker, MJ 2001, *Re-evaluation of human-toxicological maximum permissible risk levels*, RIVM,

CCME 2008, Canadian Soil Quality Guidelines, Carcinogenic and Other Polycyclic Aromatic Hydrocarbons (PAHs) (Environmental and Human Health Effects), Canadian Council of Ministers of the Environment,

CCME 2010, Canadian Soil Quality Guidelines, Carcinogenic and Other Polycyclic Aromatic Hydrocarbons (PAHs) (Environmental and Human Health Effects), Scientific Criteria Document (revised), Canadian Council of Ministers of the Environment,

CEPA 1999, Office of Environmental Health Hazard Assessment (OEHHA) Air Toxics Hot Spots Program Risk Assessment Guidelines, Part II, Technical Support Document for Describing Available Cancer Potency Factors: benzo[a]pyrene, Californian Environmental Protection Agency,

CRC CARE 2011, Health screening levels for petroleum hydrocarbons in soil and groundwater. Part 1: Technical development document, CRC for Contamination Assessment and Remediation of the Environment, CRC CARE Technical Report no. 10, http://www.crccare.com/products-and-services/health-screening-levels>.

enHealth 2012a, *Environmental Health Risk Assessment, Guidelines for assessing human health risks from environmental hazards*, Commonwealth of Australia, https://www1.health.gov.au/internet/main/publishing.nsf/Content/A12B57E41EC9F326CA257BF0001F9E7D/\$File/Environmental-health-Risk-Assessment.pdf>.

enHealth 2012b, *Australian Exposure Factors Guide*, Commonwealth of Australia, http://www.health.gov.au/internet/main/publishing.nsf/Content/health-publith-publicatenviron.htm>.

Fitzgerald, DJ 1991, Setting Response Levels for Polycyclic Aromatic Hydrocarbons (PAHs) In: El Saadi, O & Langley, A (eds) The Health Risk Assessment and Management of Contaminated Sites,, Contaminated Sites Monograph Series, South Australian Health Commission, Adelaide, Australia.

Fitzgerald, DJ 1998, The Benchmark Dose Approach and Health-Based Investigation Level for Polycyclic Aromatic Hydrocarbons (PAHs) In: Langley, A, Imray, P, Lock, W & Hill, H. The Health Risk Assessment and Management of Contaminated Sites, Contaminated Sites Monograph Series No. 7, South Australian Health Commission, Adelaide, Australia.,

Fitzgerald, DJ, Robinson, NI & Pester, BA 2004, 'Application of Benzo(a)pyrene and Coal Tar Tumor Dose–Response Data to a Modified Benchmark Dose Method of Guideline Development', *Environmental health perspectives*, vol. 112, no. 14, pp. 1341-1346.

IARC 2010, *IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Vol 92. Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures*, International Agency for Research on Cancer,

Knafla, A, Phillipps, KA, Brecher, RW, Petrovic, S & Richardson, M 2006, 'Development of a dermal cancer slope factor for benzo[a]pyrene', *Regulatory toxicology and pharmacology: RTP*, vol. 45, no. 2, Jul, pp. 159-168.

Knafla, A, Petrovic, S, Richardson, M, Campbell, J & Rowat, C 2011, 'Development and application of a skin cancer slope factor for exposures to benzo[a]pyrene in soil', *Regulatory toxicology and pharmacology: RTP*, vol. 59, no. 1, Feb, pp. 101-110.

MDEP 2002, *Weighted Skin-Soil Adherence Factors*, Massachusetts Department of Environmental Protection, .

MfE 2002, *Ambient Air Quality Guidelines, 2002 Update*, New Zealand Ministry for the Environment, https://www.mfe.govt.nz/publications/air/ambient-air-quality-guidelines-2002-update/2-health-based-guideline-values.

MfE 2011, *Toxicological intake values for priority contaminants in soil*, New Zealand Ministry for the Environment, <http://mfe.govt.nz/publications/hazards/toxicological-intake-values-priority-contaminants-soil.

NEPC 1999 amended 2013a, Schedule B1, Guideline on Investigation Levels For Soil and Groundwater, National Environment Protection (Assessment of Site Contamination) Measure, National Environment Protection Council,

https://www.legislation.gov.au/Details/F2013L00768/Download.

NEPC 1999 amended 2013b, Schedule B4, Guideline on Site-Specific Health Risk Assessment Methodology, National Environment Protection (Assessment of Site Contamination) Measure, National Environment Protection Council.

https://www.legislation.gov.au/Details/F2013L00768/Download.

NEPC 1999 amended 2013c, Schedule B5 Guideline for Ecological Risk Assessment, National Environment Protection (Assessment of Site Contamination) Measure, National Environment Protection Council,

NEPC 1999 amended 2013d, Schedule B7, Guideline on Derivation of Health-Based Investigation Levels, National Environment Protection (Assessment of Site Contamination) Measure, National Environment Protection Council, https://www.legislation.gov.au/Details/F2013L00768/Download.

NHMRC 1999, *Toxicity Assessment for Carcinogenic Soil Contaminants*, National Health and Medical Research Council,

NHMRC 2011 updated 2022, *Australian Drinking Water Guidelines 6, Version 3.8 Updated September 2022, National Water Quality Management Strategy*, National Health and Medical Research Council, National Resource Management Ministerial Council.,

NSW EPA 2014, *Waste Classification Guidelines. Part 1: Classifying Waste*, NSW Environment Protection Authority, http://www.epa.nsw.gov.au/wasteregulation/classify-guidelines.htm>.

NSW Government 1997, *Contaminated Land Management Act*, NSW Government, http://www.legislation.nsw.gov.au/maintop/view/inforce/act+140+1997+cd+0+N.

NSW Government 2021, *State Environmental Planning Policy (Resilience and Hazards) 2021*, NSW Legislation, https://legislation.nsw.gov.au/view/whole/html/inforce/current/epi-2021-0730>.

NSW Planning 1998, *State Environment Planning Policy (SEPP) No. 55 - Remediation of Land*, NSW Planning and NSW Government,

https://www.legislation.nsw.gov.au/~/pdf/view/EPI/1998/520/whole>.

UK DEFRA and EA 2002, Contaminants in Soil: Collation of Toxicological Data and Intake Values for Humans. Benzo(a)pyrene, Department for Environment, Food and Rural Affairs and the Environment Agency,

USEPA 2005, Supplemental Guidance for Assessing Susceptibility from Early-Life Exposure to Carcinogens, Risk Assessment Forum, United States Environmental Protection Agency,

USEPA 2014, *Toxicological Reivew of Benzo[a]pyrene. In support of Summary Information on IRIS. External Review Draft*, National Centre for Environmental Assessment, US Environmental Protection Authority, http://cfpub.epa.gov/ncea/iris_drafts/recordisplay.cfm?deid=280022>.

USEPA 2017, *Toxicological Review of Benzo[a]pyrene*, Integrated Risk Information System, National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency,

https://cfpub.epa.gov/ncea/iris/iris documents/documents/toxreviews/0136tr.pdf>.

Warne, MSJ 2013, Review of the appropriateness of selected Canadian Soil Quality Guidelines (benzene, benzo[a]pyrene, toluene, ethylbenzene and xylenes) for incorporation into the Australian National Environment Protection (Assessment of Site Contamination) Measure and recommended Ecological Investigation Levels, NEPC, http://scew.gov.au/system/files/pages/9b067155-4726-423b-989b-5263263b9c16/files/review-canadian-benz-tol-ethylbenz-xylenes-benzo-pyrene-sqgs-corrected-30july2013.pdf.

WHO 1998, Environmental Health Criteria 202, Selected Non-Heterocyclic Polycyclic Aromatic Hydrocarbons, World Health Organization,

WHO 2000, *Air Quality Guidelines for Europe, Second Edition*, http://www.euro.who.int/en/publications/abstracts/air-quality-guidelines-for-europe>.

WHO 2006, Evaluation of Certain Food Contaminants, 64th Report of the Joint FAO/WHO Expert Committee on Food Additives, WHO Technical Report Series 930, Joint FAO/WHO Expert Committee on Food Additives, World Health Organisation, http://whqlibdoc.who.int/trs/WHO TRS 930 eng.pdf>.

WHO 2010, WHO Guidelines for Indoor Air Quality, Selected Pollutants, WHO Regional Office for Europe,

WHO 2017, *Guidelines for Drinking Water Quality, Fourth Edition incorporating the First Addendum*, World Health Organisation, http://www.who.int/water_sanitation_health/publications/drinking-water-quality-quidelines-4-including-1st-addendum/en/.

Appendix A Site soil monitoring data

DSI Summary Tables

ABBREVIATIONS AND EXPLANATIONS

Abbreviations used in the Tables:

ABC: Ambient Background Concentration PCBs: Polychlorinated Biphenyls

ACM: Asbestos Containing Material PCE: Perchloroethylene (Tetrachloroethylene or Teterachloroethene)

ADWG: Australian Drinking Water Guidelines pH_{KCL}: pH of filtered 1:20, 1M KCL extract, shaken overnight

AF: **Asbestos Fines** pH_{ox}: pH of filtered 1:20 1M KCl after peroxide digestion

ANZG Australian and New Zealand Guidelines PQL: **Practical Quantitation Limit** RS:

B(a)P: Benzo(a)pyrene Rinsate Sample CEC: Cation Exchange Capacity RSL: **Regional Screening Levels**

CRC: Cooperative Research Centre RSW: Restricted Solid Waste CT: Contaminant Threshold SAC: Site Assessment Criteria

SCC: EILs: **Ecological Investigation Levels** Specific Contaminant Concentration ESLs: **Ecological Screening Levels** Chromium reducible sulfur S_{cr} :

FA: **Fibrous Asbestos** Peroxide oxidisable Sulfur S_{POS}: GIL: SSA: **Groundwater Investigation Levels** Site Specific Assessment

GSW: General Solid Waste SSHSLs: Site Specific Health Screening Levels

HILs: **Health Investigation Levels** TAA: Total Actual Acidity in 1M KCL extract titrated to pH6.5

TB: Trip Blank **HSLs: Health Screening Levels**

HSL-SSA: Health Screening Level-SiteSpecific Assessment TCA: 1,1,1 Trichloroethane (methyl chloroform) TCE: Trichloroethylene (Trichloroethene) kg/L kilograms per litre NA: Not Analysed TCLP: **Toxicity Characteristics Leaching Procedure**

NC: Not Calculated TPA: Total Potential Acidity, 1M KCL peroxide digest NEPM: National Environmental Protection Measure TS:

Trip Spike TRH: NHMRC: National Health and Medical Research Council **Total Recoverable Hydrocarbons**

TSA: Total Sulfide Acidity (TPA-TAA) NL: **Not Limiting** NSL: No Set Limit UCL: Upper Level Confidence Limit on Mean Value OCP:

Organochlorine Pesticides **USEPA** United States Environmental Protection Agency OPP: Organophosphorus Pesticides **VOCC:** Volatile Organic Chlorinated Compounds

PAHs: Polycyclic Aromatic Hydrocarbons WHO: World Health Organisation

%w/w: weight per weight ppm: Parts per million

Table Specific Explanations:

HIL Tables:

- The chromium results are for Total Chromium which includes Chromium III and VI. For initial screening purposes, we have assumed that the samples contain only Chromium VI unless demonstrated otherwise by additional analysis.
- Carcinogenic PAHs is a toxicity weighted sum of analyte concentrations for a specific list of PAH compounds relative to B(a)P. It is also refered to as the B(a)P Toxic Equivalence Quotient (TEQ).
- Statistical calculations are undertaken using ProUCL (USEPA). Statistical calculation is usually undertaken using data from fill samples.

EIL/ESL Table:

ABC Values for selected metals have been adopted from the published background concentrations presented in Olszowy et. al., (1995), Trace Element Concentrations in Soils from Rural and Urban New South Wales (the 25th percentile values for old suburbs with low traffic have been quoted).

Waste Classification and TCLP Table:

- Data assessed using the NSW EPA Waste Classification Guidelines, Part 1: Classifying Waste (2014).
- The assessment of Total Moderately Harmful pesticides includes: Dichlorovos, Dimethoate, Fenitrothion, Ethion, Malathion and Parathion.
- Assessment of Total Scheduled pesticides include: HBC, alpha-BHC, gamma-BHC, beta-BHC, Heptachlor, Aldrin, Heptachlor Epoxide, gamma-Chlordane, alpha-chlordane, pp-DDE, Dieldrin, Endrin, pp-DDD, pp-DDT, Endrin Aldehyde.

QA/QC Table:

- Field blank, Inter and Intra laboratory duplicate results are reported in mg/kg.
- Trip spike results are reported as percentage recovery.
- Field rinsate results are reported in μg/L.

			are centers	, prescrious	; and primar	y schools																	
All data in mg/kg unless s	stated otherwi	se	Arsenic	Cadmium	Chromium (Total)		Copper	S Lead	Mercury	Nickel	Zinc	Total PAHs	PAHs Carcinogenic PAHs	НСВ		Methoxychior	Dieldrin	Chlordane	DDT, DDD & DDE		OP PESTICIDES (OPPs) Chlorpyrifos	TOTAL PCBs	ASBESTOS FIBRES
PQL - Envirolab Services Site Assessment Criteria ((SAC) Sample		100	20	1 NSL	100	6000	300	40	400	7400	300	0.5	10	0.1 270	0.1 300	6	0.1 50	0.1 240	6	0.1 160	0.1	100 Detected/Not Detected
Sample Reference TP101	Depth 0-0.1	Sample Description Fill: Silty Clay	6	<0.4	40	NA.	65	21	0.2	11	36	19	2.5	NA.	NA.	NA.	NA NA	NA NA	NA	NA NA	NA.	NA NA	Not Detected
TP101 TP102	0.4-0.5 0-0.1	Silty Clay Fill: Silty Clay	6	<0.4	51 34	NA NA	72 58	13 20	<0.1	12 10	26 36	<0.05 34	<0.5 4.2	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA Not Detected
TP102 - [LAB_DUP] TP103	0-0.1	Laboratory Duplicate Fill: Silty Clay	6 5	<0.4	35 37	NA NA	60 43	20 28	<0.1	10 9	38 32	32 24	3.9 3.2	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	NA Not Detected
	0-0.1	Fill: Silty Clay Fill: Silty Clay	5	<0.4 <0.4	34 26	NA NA	58 52	21 21	<0.1 <0.1	10 8	39 38	59 54	6.5 6.1	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	Not Detected Not Detected
	0.0.1	Fill: Silty Clay	5	<0.4	33 44	NA NA	72 100	18	<0.1	11	43 24	5.3	0.7	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	Not Detected NA
TP107	0-0.1	Silty Clay Fill: Silty Clay	6	<0.4	39	NA	74	14	<0.1	10	39	2.8	<0.5	NA.	NA	NA.	NA	NA	NA	NA	NA	NA.	Not Detected
TP108	0.4-0.5	Fill: Silty Clay Silty Clay	11 8	<0.4	46 46	NA NA	81 100	21 9	<0.1	11 10	49 30	<0.05	<0.5 <0.5	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	Not Detected NA
TP109 TP110	0-0.1 0-0.1	Fill: Silty Clay Silty Clay	8 10	<0.4	57 59	NA NA	140 190	10 10	<0.1 0.1	13 12	30 30	<0.05 <0.05	<0.5 <0.5	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	Not Detected NA
TP110 - [LAB_DUP] TP111	0-0.1	Laboratory Duplicate Fill: Silty Clay	9	<0.4	64 25	NA NA	200 100	8 12	<0.1	12 7	30 33	<0.05 3.6	<0.5 0.6	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	NA Not Detected
TP112 TP113	0-0.1 0-0.1	Fill: Silty Clay Fill: Silty Clay	6	<0.4	21 47	NA NA	320 250	35 9	<0.1	10 13	68 53	1.3 2.9	<0.5 <0.5	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	Not Detected Not Detected
TP113	0.9-1.0	Silty Clay	7	<0.4	29	NA	340	21	<0.1	11	280	14	1.3	NA.	NA	NA.	NA	NA	NA	NA	NA	NA.	NA
TP115	0-0.1	Fill: Silty Clay Fill: Silty Sand	8 23	<0.4	33 27	NA NA	170 56	79 32	<0.1 0.5	15 11	77 140	2.5	<0.5	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	Not Detected Not Detected
TP116 TP116	0-0.05	Fill: Silty Sand Silty Clay	5	<0.4	29 40	NA NA	61 110	19 6	0.1 <0.1	9 10	44 27	3.1 <0.05	0.5 <0.5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	Not Detected NA
TP117 TP117 - [LAB DUP]	0-0.1	Fill: Silty Clay Laboratory Duplicate	5	<0.4	36 38	NA NA	66 67	16 15	<0.1	10 11	38 39	2.4 2.9	<0.5 <0.5	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1 <0.1	Not Detected NA
TP118	0-0.1	Fill: Silty Clay	5	<0.4	36	NA	62	21	<0.1	10	42	13	1.8	NA.	NA	NA.	NA	NA	NA	NA	NA	NA.	Not Detected
TP120	0-0.1	Fill: Silty Clay Fill: Silty Clay	5	<0.4	44 37	NA NA	43 54	14	<0.1 0.1	10 9	37 36	2.1	<0.5 3.8	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	Not Detected Not Detected
	0.4-0.5 0-0.1	Silty Clay Fill: Silty Clay	5 5	<0.4 <0.4	45 40	NA NA	80 64	11 14	<0.1 <0.1	8 10	19 38	<0.05 3.5	<0.5 <0.5	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA Not Detected
TP122 TP123	0-0.1	Fill: Silty Clay Silty Clay	6 12	<0.4	40 140	NA <1	86 310	18 6	<0.1	9 30	42 64	3.4 <0.05	0.6 <0.5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	Not Detected NA
TP124 TP124 - [LAB DUP]	0-0.1	Fill: Silty Clay	10	<0.4	13	NA	120	9	<0.1	5	27 42	<0.05	<0.5	<0.1	<0.1	<0.1	0.4	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
TP124 - [LAB_TRIP]	0-0.1	Laboratory Duplicate Laboratory Triplicate	11	<0.4	26 17	NA NA	180	12	<0.1	6	33	<0.05 NA	<0.5 NA	<0.1 NA	<0.1 NA	<0.1 NA	0.5 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	NA NA
TP125 TP125	0.7-0.8	Fill: Silty Clay Silty Clay	19 9	<0.4	31 61	NA NA	240 210	21 10	<0.1	11 12	54 22	2.8 <0.05	<0.5 <0.5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	Not Detected NA
	0.02-0.2	Fill: Sandy Silty Clay Fill: Silty Clay	6	<0.4	11 35	NA NA	4 84	4 34	<0.1	9	3 59	<0.05 1.5	<0.5 <0.5	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	Not Detected Not Detected
TP127 TP128	0.3-0.4	Silty Clay Fill: Silty Clay	6 7	<0.4	71 45	NA NA	120 69	12 11	<0.1	11 13	23 30	<0.05 0.4	<0.5 <0.5	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA Not Detected
TP129	0-0.1	Fill: Silty Clay	6	<0.4	53	NA	60	18	0.1	12	35	2.9	<0.5	NA.	NA	NA.	NA	NA	NA	NA	NA	NA.	Not Detected
TP130	0.4-0.5	Fill: Silty Clay Silty Clay	9 8	<0.4	56 110	NA <1	80 160	14 12	<0.1	15 19	31 24	3.4 <0.05	0.5 <0.5	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	Not Detected NA
TP131 TP131	0.2-0.3	Fill: Silty Clay XW Andesite	6 NA	<0.4 NA	18 NA	NA NA	330 NA	470 9	<0.1	9 NA	190 NA	<0.05 NA	<0.5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	Not Detected NA
TP132 TP133	0-0.1	Fill: Silty Clay Fill: Silty Clay	5 <4	<0.4 0.4	16 25	NA NA	210 220	32 120	<0.1	8	68 290	<0.05	<0.5	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1 <0.1	Not Detected Not Detected
TP134 TP135	0-0.1	Fill: Clayey Silt	5	<0.4	22	NA NA	160 190	44	<0.1	8	120	12	1.6	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA	NA	NA.	Not Detected
TP135 - [LAB_DUP]	0-0.1	Fill: Silty Clay Laboratory Duplicate	<4 5	<0.4	31	NA	230	32	<0.1	11	71 90	7 16	2.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1	Not Detected NA
TP136 TP136	0.4-0.5	Fill: Silty Clay XW Andesite	5	<0.4	15 26	NA NA	95 350	37 15	<0.1	7	93	0.4	<0.5 <0.5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	Not Detected NA
TP137 TP138	0-0.1	Fill: Silty Clay Fill: Silty Clay	5	<0.4	20 26	NA NA	210 260	26 43	<0.1	9	67 100	0.4	<0.5 <0.5	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	Not Detected Not Detected
TP139	0-0.1	Fill: Silty Clay Silty Clay	5 9	<0.4 <0.4	21 37	NA NA	210 390	98 180	0.1	8 15	230 400	2.2 <0.05	<0.5 <0.5	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	Not Detected NA
TP140	0-0.1	Fill: Silty Clay	13	<0.4	21	NA	96	23	<0.1	8	76	0.05	<0.5	NA.	NA	NA.	NA	NA	NA	NA	NA	NA.	Not Detected
TP140 TP141	0.4-0.5 0-0.1	Silty Clay Fill: Clayey Silt	5 <4	<0.4	20 12	NA NA	480 28	6 32	<0.1	12 5	51 46	<0.05 2	<0.5 <0.5	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA <0.1	NA Not Detected
TP142 TP142	0.4-0.5	Fill: Silty Clay Silty Clay	6 7	<0.4	31 110	NA <1	54 150	27 14	<0.1	7 16	29 23	19 0.07	2.7 <0.5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	Not Detected NA
TP143	0-0.1	Fill: Clayey Silt Laboratory Duplicate	5	<0.4	20 23	NA NA	150 140	15 17	<0.1	7	40 41	6.1 6.8	0.8	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1 <0.1	Not Detected NA
TP143	0.2-0.3	Fill: Silty Clay	7	<0.4	37	NA	320	11	< 0.1	12	32	0.4	<0.5	NA.	NA	NA.	NA	NA	NA	NA	NA	NA.	Not Detected
TP144	0.2-0.3	Fill: Silty Sand Fill: Silty Clayey Sand	5 14	<0.4	27 10	NA NA	50 6	54 6	<0.1	8	32 5	0.4 <0.05	<0.5 <0.5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	Not Detected Not Detected
TP145 TP145	0.4-0.5	Fill: Silty Gravelly Clay Silty Clay	6	<0.4	44 81	NA NA	58 94	18 12	<0.1	10 13	26 20	0.3	<0.5 <0.5	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	Not Detected NA
TP146 TP146	0-0.05	Fill: Gravelly Silty Clay Silty Clay	7 8	<0.4	53 21	NA NA	170 500	14	<0.1	13 10	51 25	<0.05 <0.05	<0.5 <0.5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	Not Detected NA
TP147	0-0.1	Fill: Clayey Silt Laboratory Duplicate	<4	<0.4	19	NA NA	15 13	13	<0.1	4	26 25	2.9	<0.5 <0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected NA
TP147	0.6-0.7	Fill: Sandy Clay	7	<0.4	28	NA	130	48	<0.1	18	170	95	11	NA.	NA	NA	NA	NA	NA	NA.	NA	NA.	Not Detected
TP149	0-0.1	Fill: Clayey Silt Fill: Silty Clay	<4 8	<0.4	12 19	NA NA	14 25	8 48	<0.1	6	25 57	<0.05 1	<0.5 <0.5	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	⊲0.1 NA	<0.1 NA	<0.1 NA	Not Detected Not Detected
TP149 TP149	0.5-0.6 0.7-0.8	Fill: Silty Clay Silty Clay	12 9	<0.4	62 110	NA <1	120 180	29 14	<0.1	24 22	68 30	9.8	1.2 <0.5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	Not Detected NA
TP150	0-0.1	Fill: Silty Clay Fill: Silty Clay	8 7	<0.4	46 21	NA NA	86 11	17	<0.1	14	36 19	4.1 <0.05	0.6 <0.5	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	Not Detected Not Detected
TP152	0-0.1	Fill: Silty Clay	14	<0.4	34	NA NA	57	14	<0.1	17	44	2.9	<0.5	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	Not Detected Not Detected
TP153	0.6-0.7	Fill: Silty Sandy Clay Silty Clay	9	<0.4	120	<1	160	11	<0.1	16	23	<0.05	<0.5	NA	NA	NA	NA	NA	NA	NA	NA.	NA.	NA
	0-0.1	Fill: Gravelly Clayey Sand Laboratory Duplicate	5 6	<0.4	18 22	NA NA	27 32	11 13	<0.1	5 6	21 24	15 19	2.1	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1	Not Detected NA
BH155 BH155	0.05-0.2 0.2-0.5	Fill: Silty Sand Fill: Silty Clay	10 7	<0.4 <0.4	13 62	NA NA	12 140	5 77	<0.1 0.2	2 19	6 110	19 200	2.9 18	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	Not Detected Not Detected
BH155	0.5-0.8	Silty Clay Fill: Silty Clay	7 8	<0.4	110 48	<1 NA	160 140	13 39	<0.1	21 14	25 110	<0.05 9.2	<0.5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA Not Detected
BH157	0.03-0.3	Fill: Silty Clay Fill: Silty Sandy Clay	10	<0.4	12	NA NA	21	16 26	<0.1	8 9	290	4.2 3.5	0.5	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1	Not Detected Not Detected
BH158	0.3-0.6	XW Andesite	6	<0.4	15	NA	370	3	<0.1	10	33	<0.05	<0.5	NA.	NA	NA.	NA	NA	NA	NA	NA	NA.	NA
	0-0.1	Fill: Clayey Silt Laboratory Duplicate	<4 <4	<0.4 <0.4	11 14	NA NA	19 19	13 14	<0.1	4	37 35	<0.05 <0.05	<0.5 <0.5	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	Not Detected NA
TP160 TP160	0-0.1	Fill: Silty Clay Silty Clay	5 6	<0.4	19 18	NA NA	270 440	69 5	<0.1	8 10	77 22	2.8 <0.05	<0.5 <0.5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	Not Detected NA
TP161	0-0.1	Fill: Silty Clay Fill: Silty Clay	7	<0.4	21	NA NA	160 250	35 6	<0.1	7 8	57 26	8.6 120	1.2	<0.1	<0.1 NA	<0.1 NA	<0.1	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	Not Detected Not Detected
BH162	1.2-1.4	Silty Clay	7	<0.4	74	NA	130	12	<0.1	11	21	2.8	<0.5	NA.	NA	NA.	NA	NA	NA	NA	NA	NA.	NA
TP163 SDUP101	0-0.1	Fill: Silty Clay Duplicate of TP112	7 6	<0.4	61 22	NA NA	66 290	13 39	<0.1	14 10	71	5 1.6	0.7 <0.5	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1 NA	Not Detected NA
SDUP101- [LAB_DUP] SDUP102	0-0.1	Laboratory Duplicate Duplicate of TP111	NA 5	NA <0.4	NA 21	NA NA	NA 120	NA 7	NA <0.1	NA 8	NA 34	NA 3.4	NA 0.6	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.1 NA	NA NA	NA NA
SDUP103 SDUP104	0-0.1	Duplicate of TP110 Duplicate of TP109	16 8	<0.4	61 63	NA NA	260 140	3	<0.1	14 14	36 33	<0.05	<0.5 <0.5	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	NA NA	NA NA
SDUP105 SDUP106	0-0.1	Duplicate of TP107	5	<0.4	39	NA	69	15	<0.1	11	41	2.5	<0.5	NA.	NA	NA	NA	NA	NA	NA	NA.	NA.	NA NA
SDUP107	0-0.1	Duplicate of TP102 Duplicate of TP116	5 6	<0.4	32 33	NA NA	52 80	18 21	<0.1 0.1	9 10	31 49	23 3.1	<0.5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
SDUP108 SDUP109	0-0.1 0-0.1	Duplicate of TP145 Duplicate of TP143	8 5	<0.4 <0.4	49 20	NA NA	65 130	21 16	<0.1 <0.1	10 7	27 39	0.5 8.1	<0.5 1.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1 <0.1	NA NA
SDUP109 - [LAB_DUP] SDUP110	0-0.1	Laboratory Duplicate Duplicate of TP138	5 7	<0.4	20 40	NA NA	140 460	16 67	<0.1	7 16	40 150	7.4 0.3	1 <0.5	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	NA NA
FCF101	-	Fragment	NA	NA	NA.	NA.	NA NA	NA.	NA.	NA NA	NA.	NA.	NA.	NA.	NA NA	NA.	NA NA	NA NA	NA	NA NA	NA.	NA NA	Detected
Total Number of Sampl	les		110 23	110	110 140	6 <pql< td=""><td>110 500</td><td>111 470</td><td>110</td><td>110</td><td>110 400</td><td>109</td><td>109 24</td><td>46 <pql< td=""><td>46 <pql< td=""><td>46 <pql< td=""><td>46 0.5</td><td>46 <pql< td=""><td>46 <pql< td=""><td>46 <pql< td=""><td>47 <pql< td=""><td>44 <pql< td=""><td>67 Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	110 500	111 470	110	110	110 400	109	109 24	46 <pql< td=""><td>46 <pql< td=""><td>46 <pql< td=""><td>46 0.5</td><td>46 <pql< td=""><td>46 <pql< td=""><td>46 <pql< td=""><td>47 <pql< td=""><td>44 <pql< td=""><td>67 Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	46 <pql< td=""><td>46 <pql< td=""><td>46 0.5</td><td>46 <pql< td=""><td>46 <pql< td=""><td>46 <pql< td=""><td>47 <pql< td=""><td>44 <pql< td=""><td>67 Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	46 <pql< td=""><td>46 0.5</td><td>46 <pql< td=""><td>46 <pql< td=""><td>46 <pql< td=""><td>47 <pql< td=""><td>44 <pql< td=""><td>67 Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	46 0.5	46 <pql< td=""><td>46 <pql< td=""><td>46 <pql< td=""><td>47 <pql< td=""><td>44 <pql< td=""><td>67 Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	46 <pql< td=""><td>46 <pql< td=""><td>47 <pql< td=""><td>44 <pql< td=""><td>67 Detected</td></pql<></td></pql<></td></pql<></td></pql<>	46 <pql< td=""><td>47 <pql< td=""><td>44 <pql< td=""><td>67 Detected</td></pql<></td></pql<></td></pql<>	47 <pql< td=""><td>44 <pql< td=""><td>67 Detected</td></pql<></td></pql<>	44 <pql< td=""><td>67 Detected</td></pql<>	67 Detected
Maximum Value																							

Copyright JK Environments

					C _e C _{r3} (F1)	>C ₁₀ C ₁₀ (72)	Gensere	Toluene	Estr/Asercone	Xylenes	Naphthalene	Field PID Measureme
Envirolab Services 1 2013 HSL Land Use Cac					25	50	0.2	O.S DWYHEN DENSIT	1	1	1	ppen
Sample Reference	Sample Sample	Sample Description	Depth	Soil Category			HSC-V/BC E	DW/HER DESSI	HENDENING		1	
TP901	Depth 0-0.1	Fil: Siby Clay	Om to clim	Sond	-25 -25	450 450	+0.2 +0.2	40.5 40.5	- d - d	41	41	1.7
7F901 7F902	0.4-0.5 0-0.1 0-0.1	Sifty Clay Fill: Sifty Clay Laboratory Duplicate	On to <in< td=""><td>Sand Sand</td><td>-25 -25</td><td>450 450</td><td>-D.2 -D.2</td><td>+0.5 <0.5</td><td>-41</td><td>-4</td><td>4</td><td>1.5 NA</td></in<>	Sand Sand	-25 -25	450 450	-D.2 -D.2	+0.5 <0.5	-41	-4	4	1.5 NA
TP392 - [(A8_0UP] TP303			On to con	Sand Sand	+25	- 56 - 50	+0.2	+0.5	- 4	-1	- 4	14A
79904 79903 79906	0-0.1	Fill Silty Clay Fill Silty Clay Fill Silty Clay	On to cin On to cin On to cin	Sand	c25 c25	450 450	49.2 49.2	<0.5	- cl	<1	- 4	1.4
7P906 7P906	0-0.1 0-0.1 0-4-0.5		Om to cim Om to cim	Sond Sand Sand	425 425 425	450 450 450	+0.2 +0.2 +0.2	40.5 40.5 40.5	- 4	<1	- d - d	1.4
78977	0.01	Fil: Siby Clay	dentaria.	Sand	-25	450		40.5		-4	<1	1.9 1.4
7F938 7F938	0.0.1 0.4-0.5	Fill: Silty Clay Fill: Silty Clay Silty Clay	On to can	Sand Sand	-25	<50 <50 <90	+0.2 +0.2 +0.2	<0.5 <0.5	-1	<1	4	22.5 1.4
TF109	0.0.1			Sand Sand	- Q5 - Q5	<90 450 450	<0.2 +0.2	40.5	- d	<1		
TP310 - [(AB_DUP] TP311 TP312	0-0.1 0-0.1 0-0.1	Sify Clay Laboratory Daplicate Fill: Siby Clay Fill: Siby Clay	Om to con Om to con Om to con	Sand Sand Sand	- C25	<50	40.2 40.2	40.5	4	<1	4 4 4	14A 1.2
TP112	0-0.1	Filt Sity Clay		Sand	+25 +25	430 450	+0.2	+0.5 +0.5	4	<1	d	1
77113 77113 77114	0.0.1 0.9-1.0 0.0.1 0.0.1	Fil: Stry Clay Sity Clay	Om to <2m Om to <3m	Sand Sand Sand	-25 -25	<50 <50	<0.2 <0.2 <0.2 <0.2	40.5 40.5	- 4	- 41	4	6.4 7.9
7P114 7P115	0-0.1	Sity Clay Fill: Sity Clay Fill: Sity Sand	Om to cim Om to cim Om to cim	Sand Sand	<25 <25	<90 73	<0.2 40.2	<0.5 <0.5	- cl		4	2.7 2.8
TP116	0.005			Sand	<25 125	120			4	<1	4	4.3
79116 79117	0.01	Sity Clay Fill Sity Clay	Om to <2m Om to <2m	Sond Sond	<25	<90	+0.2 +0.2	+0.5 +0.5	- 4	d	<1	9.5 1.4 593
TP117 - [LAB_DUP] TP118		Laboratory Duplicate Fill: Siby Clay	Om to <2m Om to <2m	Sand Sand	425 425	<50 <50	+0.2 +0.2	40.5 40.5	d d	- 4	- Q - d	
77119 77120	0-0.1 0-0.1 0.4-0.5	Fill: Sitry Clay Fill: Sitry Clay	Om to sim Om to sim	Sind Sind	<25 <25	450 450	+0.2 +0.2 +0.2	+0.5 +0.5 +0.5	- cl	<1	4	4.3 5.2
7F120		Sity Clay Fill: Sity Clay	Om to com	Sand	<25 37	450 450 450	40.2	40.5	d d	<1	4	8.6
19122 19122	0 0.1 0 0.1 0 0.1	Fills Silver Class	On to cin	Sand Sand	- 25	<60	703	40.5	d	4	<1	2.4
TP124	0-0.1	Sity Clay Fill: Sity Clay		Sand Sand Sand	<25 <25	430 450	40.2 40.2	40.5 40.5	- 4	<1	4	1
TP124 - [LAB_DUP] TP125 TP125		Laboratory Duplicate City City City		Sand Sand	·25	450 450	+D.2	+0.5 +0.5	d d	<1	- d - d	54A 1.1
7F125 BH126	0.02-0.2 0.02-0.2	Sity Clay Fill: Sandy Sity Clay	On to con On to con On to con	Sand Sand Sand	<25 <25	-60 -60	<0.2 <0.2	40.5 40.5	d d	<1	d d	1.7
	0.0.1			Sand Sand	425 425	K50		<0.5 <0.5		41	4	5.9
19127 19128 19129	0-0.1 0-0.1	Sity Clay Fill: Sity Clay Fill: Sity Clay	Om to clin Om to clin Om to clin	Sand Sand Sand	-25	<50 <50 <50 <50	+0.2 +0.2 +0.2 +0.2	<0.5 <0.5 <0.5	4	-d	- 4	6.
	0.01		Om to <2m	Sand Sand	-25 -25	450 460	<0.2 <0.2	<0.5 <0.5	<1 (I	<1	4	7.5 9.8
79130 79131 79132	0405	Sify Clay Fill Sify Clay Fill Sify Clay Fill Sify Clay		Suppl	-25 -25	450 450	10.2	10.5	4	-0	- 4	0.2 1.8
79112	0 0.1 0 0.1	Fil: Siby Clay	On to con On to con On to con	Sand Sand	+25 +25	490 490	+D.2 <0.2	*0.5 <0.5	d d	- a	- d - d	1.1
TP153		Filt Sity Clay Filt Clayey Sit		Sand Sand						<1		2.1
TP135 (F135 - [LAB_DUF] TP136	0-0.1 0-0.1 0-0.1	Fift Clayer Silt Fift Silty Clay Laboratory Du plicate Fift Silty Clay	Om to cim Om to cim	Sand Sand Sand	c25	<50 <50	<0.2 <0.2 <0.2	40.5 40.5 40.5	- c1	<1	- 4	3 141
TP136	0.4-0.5			Sand	<25 -25 -25	-50 -50 -50			41	-41	4	1.9
19136 19137		Fill: Siby Clay	Om to cim	Sand Sand Sand	-25 -25	450	+0.2	+0.5	-1	-1	4	0.8
TF138 TF129	0-0.1	Fill: Siby Clay Fill: Siby Clay Fill: Siby Clay	Om to cim Om to cim Om to cim		+25	490 450	+0.2 <0.2 +0.2	+0.5 <0.5 +0.5		-1	- 4	0.8
TP139 TP140 TP140				Sand Sand	-25	<50 450				<1	<1	1.9
TF540 TF541	0.01	Fil: Sity Clay Sity Clay	Om to clm Om to clm Om to clm	Sand Sand	-25 -25 -25	450 450	+0.2 +0.2 +0.2	+0.5 +0.5 +0.5	<1	- 4	4	2.4 3.5 2.7
TP142		Filt Clayer Silt Filt Silty Clay		Sand Sand	- 25 - 25	450 450		40.5 40.5	- 41	- 4	<1	
79342 79343	0.40.5 0-0.1 0-0.1	Sifty Clay Fift Clayer Sit Laboratory Daplicate Fift: Sifty Clay	Om to <2m Om to <2m	Sond Sand	125	450 450	<0.2 <0.2 <0.2	40.5 40.5		- 41	41	7.3 2.9 14A
TF343 - [LAB_DUF]		Liberatory Displicate Fill: Siby Clay	On to <in< td=""><td>Sond</td><td>-25 -25</td><td>450</td><td>+0.2</td><td>40.5</td><td><1</td><td>-1</td><td>4</td><td>3.5</td></in<>	Sond	-25 -25	450	+0.2	40.5	<1	-1	4	3.5
19344 19344 19345	0-0.1 0.2-0.3 0-0.1	Fill: Sity Sand Fill: Sity Clayey Sand Fill: Sity Gravely Clay	On to <2m	Sand Sand Sand	-Q5 -25	150	<0.2	40.5 +0.5	4	<1	4	1.7
TP345	0-0.1	Fill: Sitry Gravely Clay		Sand	<25	<50	-0.2 -0.2	<0.5		- 4	4	2.1
77345 77346	0.4-0.5 0-0.06	Sifty Clay Fill: Gravelly Sifty Clay	Om to <2m Om to <2m	Sand Sand	425 425	<50 <50	40.2 40.2	40.5 40.5	- 4	41	4	2.5 7.1
78345 78347	0.3-0.4	Sity Clay Filt Clayey Sit	Om to <2m Om to <2m	Sand Sand	<25 <25	<50 <50 <50	40.2 40.2 40.2	<0.5 <0.5 <0.5		<1	- d	7.4 2.5 NA
TF347 - [UAB_DUF]	00.1	Laboratory Duplicate		Sand Sand	<25 -25	<90 -50	40.2	<0.5	4	d	4	344
79148 79149 79149	0.0.1	Filt Sandy Clay Filt Clayor Sit	Om to can Om to can Om to can	Sand Sand	235	<90	+0.2 +0.2 +0.2	205	d	<1	<4	2.8 1.8
79549 79549	0.5-0.6 0.7-0.8	File Ciryon Sit File Siby Clay File Siby Clay		Sand	425 425	450 450	40.2 40.2	40.5 40.5	- 4	<1	4	0.4
7F149 7F150	0.7-0.8	Sify Clay Fill Sify Clay Fill Sify Clay Fill Sify Clay	On to con On to con	Sand Sand	·25	K90 K90	+0.2	+0.5	- d	<1	- d - d	0.9
19351 19352	0-0.1 0-0.1 0-0.1	Fil: Sity Cay	On to <in On to <in On to <in< td=""><td>Sond Sand</td><td><25 <25</td><td>-60 -60</td><td>40.2 40.2</td><td>40.5 40.5</td><td>41</td><td><1</td><td>4</td><td>12</td></in<></in </in 	Sond Sand	<25 <25	-60 -60	40.2 40.2	40.5 40.5	41	<1	4	12
79153 79153			On to sin		- 25 - 25				d	4	41	3.2
TP353 TP354 TP254 - [LAB_DUP]	0.6-0.7 0-0.1 0-0.2	Sity Clay Filt Gravely Clayes Sand	0m to <2m 0m to <2m 0m to <2m 0m to <2m	Sond Sond Sond	<25	450 450 450	40.2 40.2 40.2	40.5 40.5 40.5		<1	4	4
					·25				<1 <i< td=""><td><1</td><td></td><td>14A 4.3</td></i<>	<1		14A 4.3
BH 155	0.2-0.5 0.5-0.8 0.0.1	Fill: Sity Sand Fill: Sity Clay Sity Clay	Om to clin Om to clin Om to clin	Sand Sand	425 425	450 450 450	+0.2 +0.2 +0.2	40.5 40.5	- d	-4	- Q	41
9H155 7F156 9H157	0.03-0.3	Fill: Sity Clay	Om to sim	Sand Sand	425	490 490		40.5 40.5	- d - d	d d	4	0.4
8×157 8×158 8×158	0.04-0.3	Fil: Sity Clay Fil: Sity Sandy Clay XW Andesite	On to cim On to cim On to cim	Sand Sand Sand	- 25	- G0 - G0	40.2	40.5	4 4	4	d d	4.6 0.1
77139	0.3-0.6	Filt Cirrer Sit			- 25 - 25	<50 <50 <50	<0.2 <0.2 <0.2	<0.5 <0.5	<1	- 4		
		Laboratory Duplicate Fill Sity Clay			<25 -25	450 450	40.2	40.5	41	41 41	4	14A 1.6
TP360 TP360 TP361	0-0.1 0.2-0.1 0-0.1 0.04-0.2		On to can On to can	Sand Sand	<25 <25	450 450	+0.2 +0.2	*0.5 <0.5	d	-1	d	5.8 2.4
	0.04-0.2	Fil: Sity Cay Fil: Sity Cay	0m to <2m	Sand Sand	*25	150	< 0.2	<0.5	4	41	- G	6 35
8H162 1F003 SDUP101	1.2-1.4 0-0.1 0-0.1	Sity Clay Fill: Sity Clay Duplicate of TP312 Duplicate of TP312	On to cin On to cin	Sand Sand Sand	- 25 - 25 - 25	<50 <50	<0.2 <0.2	<0.5 <0.5	- cl - cl	<1	<1 q	0.7
		Duplicate of TP112 Duplicate of TP111			<25	<50 450 450	+0.2 +0.2 +0.2	40.5 40.5	4	<1	4	0.7 NA NA
STRUPTOS	0.01		dente class	Steed	-25 -25	450 460	40.2	40.5	4	4	- d	164
580P104 580P105	0.01	Duplicate of TP309 Duplicate of TP307	0m to <2m 0m to <2m	Sand Sand	125	450 450	+0.2 +0.2 +0.2 +0.2	40.5 40.5	4	41	a a	16A 16A
SBUP106 SBUP107	0.0.1	Duplicate of TP102 Duplicate of TP116	On to sim	Sand Sand	-25 71				- cl - cl	<1 -1	-d -d	160
SDUPLOR SDUPLOP SUPLOP - JUAN DUPL	0-0.1 0-0.1 0-0.1	Duplicate of TP345 Duplicate of TP343	Om to con Om to con Om to con	Sand Sand	<25 <25	490 450	<0.2 <0.2 <0.2	40.5 40.5	el el	<1		16A 16A 16A
PUPIOS - JUAN DUPI	0-0.1	Laboratory Duplicate		Sand	<25	<50	<0.2	<0.5	- 4	4	<1	164
500P110	0.0.1	Duplicate of TP138	Om to <2m	Sand	·25	<50	+0.2	+0.5	q	-4	- 41	160.
Number of Samples mem Value					109	109 230	109 45'OL	109	105 47GL	189 4FOL	109	89

HSL SOIL ASSESSMENT ORITE

Sample Reference	Sample Depth	Sample Description	Depth Category	Soil Category	$C_{q^{\ast}}C_{q,b}(FB)$	>C ₉₅ C ₉₆ (F2)	Sanzene	Toluene	Ethylomorne	Xylones	Nephtha
79901	0.0.1	Fill: Siby Clay	Om to <2m	Sand	45	130	0.5	160	55	40	1
TF901	0.4-0.5	Sity Oliv	0m to <5m	Sond	45	110	0.5	160	99	40	3
TF922	0-0.1	Fill: Siby Clay	Om to <0 m	Sond	45	110	0.5	160	55	40	
TP392 - [LAB_DUP] TP303	0.01	Laboratory Displicate Fill: Siloy Clay	On to <in< td=""><td>Sand Sand</td><td>45</td><td>110</td><td>0.5</td><td>160 160</td><td>55 55</td><td>40</td><td>- 1</td></in<>	Sand Sand	45	110	0.5	160 160	55 55	40	- 1
78934	0.01	Fill: Siby Clay	Om to can	Sand	46	110	0.5	160	95	40	1
77925	0.0.1	Fill: Siby Clay	Om to sign	Sand	45	110	0.5	160	55	40	3
77936	0.0.1	Fill: Siby Clay	Om to <3m	Sand	45	130	0.5	160	55	40	1
77309	0.4-0.5	Sity Clay	Om to <2m	Sond	45	110	0.5	160	99	40	3
TP927	0-0.1	Fill: Siby Clay	Om to <2m	Sand	45	110	0.5	160	55	40	1
TP938	0.0.1	Fill: Siby Clay	dm to <2m	Sond	45	110	0.5	160	55	40	- 1
19338 19339	0.4-0.5	Sity City Fill: Sity Clay	On to <2m On to <2m	Sand Sand	45	110	0.5	160 160	55 55	40	- 1
77110	0.01	Sity City	Om to clim	Sort	45	110	0.5	160	25	40	- 1
TP110 - [UAB 00P]	0.0.1	Laboratory Dualicate	On to sin	Sond	46	119	9.5	160	55	40	1
77111	0.0.1	Fil: Sity Clay	Om to sim	Sind	45	110	0.5	160	55 55	40	- 1
TF112	0-0.1	Fill: Siby Clay	Om to can	Sand	45	110	0.5	160	55	40	1
77113	0.0.1	Fil: Sity Clay	On to som	Sond	46	130	0.5	160	55	40	3
TF113	0.9-1.0	Sity City	Om to clim	Sand	45	110	0.5	160	55	40	
79114 79115	0-0.1	Filt: Sity Clay Filt: Sity Sand	On to <2m	Sand Sand	45	110	0.5	160	95	40	
79116	0-0.1	Fill Silv Sand	On to sin	Sond	45	110	0.5	160	50 85	40	3
77116	0.006	Sity Clay	Om to clim	Sand	45	110	0.5	160	55	40	- 1
78117	0-0.1	Fill: Sity Clay	On to can	Sand	AG.	110	0.5	160	95	40	1
77227 - [LAB 007]		Laboratory Duplicate	Om to rûm	Sond	40	130	0.5	160	55	40	
TF118	0.0.1	Fill: Siby Clay	On to <jm< td=""><td>Sand</td><td>45</td><td>110</td><td>0.5</td><td>160</td><td>55</td><td>40</td><td>- 1</td></jm<>	Sand	45	110	0.5	160	55	40	- 1
77119	0.0.1	Pil: Siby Clay	Om to +2m	Sond	45	110	0.5	160	55	40	3
TF120	0-0.1	Fill: Siby Clay	Om to clim	Sand	45	110	0.5	160	55	40	1
77120	0.4-0.5	Sity City	Om to -2m	Sond	45	110	0.5	160	SS	40	3
TP121 TP122	0.01	Fil: Sity Clay Fil: Sity Clay	Om to clim	Sand	45	110	0.5	160 160	55 56	40	1
78122 78123	0.01	Sity Cay	On to can	Sand Sand	- 60	110	0.5	160	50	40	- 1
TP124	00.1	Fili Sity Cay	dente-cin	Stend	45	110	0.5	160	55	40	3
TP224 - [UAB_DUP]	0.0.1	Laboratory Duplicate	Om to sim	Sond	- 65	110	0.5	160		40	1
TP125	0-0.1		On te cin	Sond	45	110	0.5	160	55 55	40	1
77125	0.7-0.8	Sity City	Om to sim	Sond	45	130	0.5	160	55	40	
BH126	0.02-0.2	Fil: Sandy Sity City	0m to <3m	Sand	45	110	0.5	160	55	40	3
19127	0.0.1	Pil: Sity Clay	On to -2m	Sand	45	110	0.5	160	55	40	3
19127 19128	03-04	Sity Clay Fit: Sity Clay	On to cim	Sand Sind	45	110	0.5	160	55 86	40	1
7F128 TF129	0-0.1	Fil: Sity Clay Fil: Sity Clay	Om to <2m	Sond Sand	45 45	130	0.5	160	SS 55	40	- 1
TP190	0-0.1	Fil: Sky Clay	On to san	Sand	45	110	0.5	160	55 55	40	- 1
77130	0.4-0.5	Sity City	9m to sam	Sond	40	130	0.5	160	55	40	1
TF131	0.0.1	Fill: Sity Clay	din to <pn< td=""><td>Sond</td><td>45</td><td>110</td><td>0.5</td><td>160</td><td>55</td><td>40</td><td>1</td></pn<>	Sond	45	110	0.5	160	55	40	1
TF132	0.0.1	Fil: Sity Clay	Om to <2m	Sand	45	110	0.5	160	55	40	
TP\$33	0.0.1	Fill: Siby Clay	On to <pn< td=""><td>Sand</td><td>45</td><td>110</td><td>0.5</td><td>160</td><td>55</td><td>40</td><td>1</td></pn<>	Sand	45	110	0.5	160	55	40	1
77134	0.0.1	Filt Clayey Silt	Om to -Om	Sand	46	130	0.5	160	55	40	, ,
TF135	0-0.1	Fil: Siby Cay	Om to can	Sand	45	110	0.5	160	55	40	1
TF135 - [(A8_0UF)	0-0.1	Laboratory Daplicate Fill: Siby Clay	Om to kin Om to kin	Sand Sand	45	130	0.5	160	55	40	- 1
77136	0.40.5	XW Anderske	On to <2n	Sond	45	110	0.5	160	50 86	40	- 1
79137	0.0.1	Fil: Siby Clay	Om to clm	Sand	45	120	0.5	160	55	40	1
TP138	0.01	Fill: Sity Clay	On to spin	Seed	46	110	0.5	160	55	40	1
77132	0.0.1	FIL: Silby Clay	Om to sim	Sand	45	130	0.5	160	55	40	
TF139	0.2-0.3	Sity Oay	0m to <5m	Send	49	110	0.5	160	99	40	3
775-93		Fill: Siby Clay	Om to <2m	Sond	45	110	0.5	160	55	40	
7F340	0.4-0.5	Sity City	0m to can	Send	45	110	0.5	160	55 55	40	1
TF141 TF142	0-0.1	Filk Clayey Silt Fill: Silty Clay	On to cim	Sand Sand	45	130	0.5	160	55	40	
79142	0.4-0.5	Sity City	On to san	Sind	45	110	0.5	160	50	40	- 1
77143	0.01	Filt Clayey Sit	Om to clm	Sand	45	130	0.5	160	55	40	- 1
TF343 - [LAB_DUF]	0.0.1	Laboratory Dunfcote	On to sim	Sond	45	110	0.5	160	99	40	1
TF143	0.2-0.3	Fil: Siby Clay	Om to clm	Sond	45	110	0.5	160	55	40	- 1
TP\$44	0.0.1	Fill: Sity Sand	dm to <2m	Sand	46	110	0.5	160	55	40	3
TF244	0.2-0.3	Fill: Sity Clayry Send	Om to <2m	Sond	45	130	0.5	160	55	40	
TF145	0.0.1	Fill: Siby Gravely Clay	0m to <5m	Sand	45	110	0.5	160	95	40	1
17545 17546	0.4-0.5		Om to 42m	Sand	45	110	0.5	160	55	40	
79546 79546	0.006	Fill: Gravely Sity Clay Sity Clay	Om to <)m Om to <)m	Sand Sand	45	110	0.5	160	55 55	40	1
7F546 7F547	0-0.1	Sity Clay Filt Clayey Sit	Om to <2m	Sand	45	130	0.5	160	55	40	- 1
TP347 - [LAB DUP]		Laboratory Dunifroto	dm to <2m	Sind	45	110	0.5	160	86	40	1
78947	0.6-0.7	Laboratory Duplicate Fill: Sandy Clay	Om to clim	Sand	45	130	0.5	160	55	40	1
TF148	0.0.1	Filt Clayer Sit	On to <pn< td=""><td>Sond</td><td>45</td><td>110</td><td>0.5</td><td>160</td><td>99</td><td>40</td><td>1</td></pn<>	Sond	45	110	0.5	160	99	40	1
TF149			Om to <0 m	Sond	45	110	0.5	160	55	40	
TP549	0.5 0.6	Fill: Sity Clay	0m to <5m	Sand	45	119	0.5	160	55	40	- 3
773-99	0.7-0.8	Sity Clay	Om to <2m	Sond	45	110	0.5	160 160	55 55	40	
TP150 TP151	0-0.1	Fill: Siby Clay Fill: Siby Clay	Om to con	Sand Sind	45	110	0.5	160	55	40	1
7F151 7F152	0.0.1	FILSBy Cay	Om to <2m	Sand	- 6	130	0.5	160	55	40	, ,
77253	0.0.1	PH: Sity Seedy City	On to san	Sored	45	110	0.5	160	99	40	1
TF153	0.6-0.7	Sity City	Om to clim	Sond	45	110	0.5	160	55	40	1
78154	0.01	Filt: Gravelly Ciryon Sand	0m to <2m	Sond	45	110	0.5	160	88	40	3
TP254 - [LAB_DUP]	0.0.1	Laboratory Duplicate	Om to clm	Sond	45	130	0.5	160	55	40	1
BH 155	0.05-0.2		0n to <5n	Sand	45	119	0.5	160	55	40	, ,
BH155	0.2-0.5		Om to com	Sond	45	130	0.5	160	55	40	
8H155 17150	0.5-0.8	Sity Cay Fill: Sity Cay	On to <in< td=""><td>Sand Sand</td><td>- 6</td><td>110</td><td>0.5</td><td>160</td><td>55 55</td><td>40</td><td></td></in<>	Sand Sand	- 6	110	0.5	160	55 55	40	
TF156 BH157	0.03-0.3	Ell-Shy Che	Om to cim	Sand	45	110	0.5	160	55	40	
81157	0.04-0.3	Fill: Sity Sendy City	On to sim	Sind	45	110	0.5	160	55	40	1
BH158	0.3-0.6	XW Anderste	Om to cam	Sand	45	130	0.5	160	55	40	1
77159	0.0.1	Filk Clayey Silt	On to can	Sand	45	110	0.5	160	55	40	3
TF259 - [UAB_DUF]		Laboratory Duplicate	Om to cam	Sond	45	130	0.5	160	55	40	1
TF560	0.0.1	Fil: Sity Cay	dn te≺in	Stend	45	110	0.5	160	55	40	3
TF000	0.2-0.3	Sity Clay	Om to <2m	Sored	- 65	110	0.5	160	55 55	40	,
TP161 DH162	0.04-0.2	Fill: Siby Clay	On to sin	Sand	45	130	0.5	160 160	55	40	- 3
BH162 BH162	0.04-0.2	Fill: Siby Clay Siby Clay	Om to sim	Sand Sand	- 6	130	0.5	160	55	40	
8H162 7F363	1.2-1.4	Sity Clay Mr. Sity Clay	Om to <3m	Sand	45	110	0.5	160	55	40	- 1
19363 SBUP101	0-0.1	Pill: Sity Clay Duplicate of TP112	Om to <2m	Sand	45	130	0.5	160	55	40	1 1
SEMP102		Duplicate of TP111	On to -1m	Steed	45	110	0.5	160	86	40	1 3
SDUP103	0.0.1	Duplicate of TP130	Om to clim	Sond	45	130	0.5	160	55	40	1
S0UP104	0-0.1	Duplicate of TP389	On to sim	Sond	45	110	0.5	160	55	40	3
SDUP105	0.0.1	Dualizate of TP207	Om to can	Sond	45	130	0.5	160	55	40	1
S0UP106	0.0.1	Dualicate of TP382	0n to <2n	Sond	45	110	0.5	160	55	40	3
5DUP107			Om to <2m	Sand	45	220	0.5	160	55	40	1
SDUP108	0.01	Duplicate of TP345	0n to <3n	Sand	45	110	0.5	160	55	40	- 3
SDUP109 DUP109 - LAB DUP1	0.0.1	Duplicate of TP143 Laboratory Duplicate	Om to rûm Om to rûm	Sand Sand	46	130	0.5	160 160	55 55	40	

		_	C _C C _{iii} (F1) plus	>C ₁₀ ·C ₁₄ (F2) plus		
			BTEX	nagthaiene 50	×C ¹⁰ -C ³⁴ (F3)	>C ₃₄ C ₄₀ (F-
QL - Envirolab Services EPM 2013 Land Use Cat	egory		25 R	50 ESIDENTIAL, PARKLAND	E PUBLIC OPEN SP	ACE LOD
Sample Reference	Sample Depth	Soil Texture				
TP201	0.40.5	Coerse	425 425	-60 -60	<100 <100	<100
TP101 TP102	0.0.1	Coerse	<25	<50	210	<100 <100
TP102 · [LAB_DUP] TP108	0-0.1	Coarse	<25 <25	<50 56	210	<100 160
TP104	0.0.1	Coerse	as as	- 50 - 50	140	<100
TP105	0.01	Coerse	c25	-50	180	<100
TF206	0.4-0.5	Coerse	425 425	-50 -50 -50	+200	<100
TP107 TP108	0.01	Coerse	-25	<50 <50	<100 <100	<100 <100
TP108 TP109	0.4-0.5	Coerse Coerse	- Q5 - Q5	<50 <50	<100 <100	<100 <100
TP109 TP110	0-0.1	Coorse	<15 c15	<50 <50	<100 <100	<100
TRICO, DAY, DUR	001	Coerse	<25	<50	r100	e100
TF211	0.0.1	Coerse	- 25	-50	290	<100 4100
TP112 TP118 TP118	0.0.1	Coerse	<25 <25	<50 <50	K100	<100 <100
	0.9-1.0	Coerse	<25 <25	<50	100	
TP115 TP116	0.01	Coorne	-31	73	620	250 240
TP116 TP116	0-0.05	Coerse	d5	120	720 <100	
TP117	0.01	Coerse	es es	150	r100	<100 <100 <100
TP117 - [LAB_DUP] TP118	001	Coerse	<25 <25	-50 -50	120	<100
TP119	001	Coorne	- 25	c50	c100	
TP120 TP120		Coarse	-25 -25	<50 <50	190	<100 <100
TP121 TP122	0-0.1 0-0.1	Coarse	17	r50	170 160	<100 <100
	0-0.1	Coerse Coerse	as as	-50		
TP124	0.01	Coerse	-25	-50	*100	×100
TP124 - [LAB_DLP] TP125	0.01	Coerse	<25 <25	<50 <50	100 150	<100 <100
TP125 TP125	07.09	Coorse	215	<50	2100	e100
8H126 TP127	0.02-0.2	Coarse Coarse	Q5 Q5	<50 <50	<100 <100	<100 <100
TP127		Coerse			<300	
TP128 TP129	0-0.1 0-0.1	Coerse Coerse	-25 -25	-50 -50	+100 +100	<100 <100
	0.01	Charse			×100	
TP130 TP131	0.4-0.5	Coarse Coarse	<25 <25	<50 <50	<100 <100	<100 <100
TP132 TP133	0-0.1	Coerse	<25	<50	130	<100
TP133 TP134	0.01	Coarse Coarse	- c15	-50	<100 100	<100
19235			<25 <25	-50	+100 +100	<100 <100
TP135 - [LAB_DUP] TP136	0-0.1 0-0.1	Coerse Coerse	425	<0	290	249
	0.4-0.5	Coarse	- 25	<50 <50	<100 <100	
TP137 TP138	0-0.1	Coerse	45 45	<50	<900 <900	<100 <100
TP119	0.01	Coerse	c25	<50 c50	<100	<100
TP240	0.0.1	Course	425 425	150	<200	<100 <100
	0.4-0.5	Coerse	- 25	-50 -50	<100 <100	<100 <100
TP141 TP142	0-0.1 0-0.1 0.4-0.5	Coarse	-25 -25	<50	<300	<100
TP142 TP143	0.4-0.5		<25	<50 <50		
TP141 - [LAB_DLP]	0-0.1 0-0.1	Coarse Coarse	<25 <25	c50	<300 <300	<100 <100
TP143 TP144	0.2-0.3	Coerse	<25 <25	<50 210	<100 1100	<100 440
TP144	0.2-0.3	Coerse	125	+50	<100	<100
TP145	0-0.1	Coarse	-25 -25	<50 <50	100	<100 <100
TP146 TP146	0.005	Coerse	<25	<50 <50	<100 <100	<100 <100
TP146 TP147	0.3-0.4	Coarse	<25 <25	<50 <50	<100	<100
TP147 - [LAB_DUP] TP147	0-0.1 0.6-0.7	Creme	c15	<50	c100	<100
TP147 TP148	0.6-0.7	Coerse	-25	-50	160	<100
19148 19149 19149	0-0.1 0-0.1 0.5-0.6	Charse	425 425	-50 -50 -50	*100 160 *100	269 <100
TP149 TP149	0.5 0.6	Coerse Coerse	<25 <25	<50 <50	<100 <100	<100 <100
	0-0.1 0-0.1	Coarse	<35	<50	×100	c100
TP151 TP152	0-0.1	Coorse Coorse	- C25 - C25	-50 -50	<100	<100
TP153 TP153	0.01	Coerse	125	<50	400	160
	0.6-0.7	Coerse Coerse	- 25 - 25	-50 -50	<100 <100	<100 <100
TP154 [LAB_DLP]	0.01	Coerse	-715	<0	<100	<100 <100
TP154 (LAB_DLP) BH155 BH155	0.05-0.2	Coerse Coerse	<25 <25	<50 <50	<100 400	<100 120
		Coarne		c50	c100	e100
TP156 88157	0.01	Coerse	43	-50	<200 <100	<100
59050	0.06-0.3	Coerse			<100	e100
8H158 TP159	0.3-0.6	Coerse Coerse	-25 -25	<50 <50	<100 <100	<100 <100
TP199 - [LAB_DUP]	0-0.1	Coerse	-25 -25		<100	<100
TP159 - [LAB_DUP] TP160 TP160	0-0.1 0-0.1 0.2-0.3	Coarse Coarse	<25 <25	<50 <50	<100 <100 <100	<100 <100 <100
	0.01	Coarse	<25	<50		
8H162 5H162	1.2-1.4	Coerse	-25 -25	-50 -30	220 +200	<100 <100
TP163		Coarse	125		×100	
SDUP901 SDUP902	0.0.1	Coarse Coarse	<25 <25	<50 <50	<100 <100	<100 <100
		Coerse		<50		
SDUP904 SDUP905	001	Coarse Coarse	435 435	<50 <50	<200	<100
5002206	0.0.1			150	150	
5007907 5007908	0-0.05	Coerse	71	150 <50	830 <100	240 <100
SDUP909	0.0.1		<25	<50	140	<100
SDUP109 SDUP109 - 0.AB_DUPI SDUP110	0-0.1 0-0.1	Coerse Coerse	<25 <25	<50 <50	<100 <100	<100 <100
otal Number of Sample		- CONT.A.				
otal Number of Sample Izoimum Value			109 71	109 210	109	109 493

MANAGEMENT LIMIT ASSESSMENT CRITERIA

Sample Reference	Sample Depth	Soil Temure	C _S -C ₁₀ (F1) plus RYFX	×C ₁₀ ·C ₁₄ (F2) plus nagthalene	>C ₁₅ -C ₃₄ (Fil)	>C ₉₆ C ₄₀ (F
TP101 TP101	0.0.1	Coerse	700 700	1000	2500 2500	19900
TP101 TP102	0.4-0.5	Coerse	700	1000	2500 2500	10000
TP102 - BAR DUPL	0.0.1	Coerse	700	1000	2500	10000
TP108	0-0.1	Coerse	700	1000	3500	10000
TP104	0-0.1	Coarse	700	1000	1500	10000
TP105 TP106	0-0.1	Course	700	1000	3500 2500	10000
TP106	0405	Course	700	1000	2500	10000
TP107	0.0.1	Coerse	700	1000	2500	19999
TP106	0.0.1	Coarse	700	1000	2500	10000
TP108	0.4-0.5	Coerse	700	1000	2500 3500	10000
TP109 TP110	0-0.1	Coarse	700 700	1000	2500 2500	10000
TP110-BAB DUPT	0-0.1	Coerse	700	1000	3500	10000
TP211	0.0.1	Course	700	1000	2500	10000
TP112	0-0.1	Coerse	700	1000	2500	10000
TP113 TP113	0.9-1.0	Coerse	700 700	1000	2500 2500	10000
TP115	0.9-1.0	Coerse	700	1000	2500	10000
TP115	0-0.1	Coerse	700	1000	3500	10000
TP116	0-0.05	Coarse	700	1000	3500	10000
TP116	0.4-0.5	Coerse	700	1000	2500	19933
TP117	0.0.1	Coarse	700	1000	3500	10000
TP117 - [LAB_DUP] TP118	0.01	Coerse Coerse	700 700	1000	2500	10000
TP118	0.01	Coerse	700	1000	2500 2500	19933
TP120	0.0.1	Coerse	700	1000	2500	10000
TP120	0.4-0.5	Coerse	700	1000	2500	10000
TP121	0-0.1	Coarse	700	1000	2500	19900
TP122	0-0.1	Coerse	700	1000	3500	19900
TP123 TP124	0-0.1	Coarse	700	1000	2500 2500	10000
TP124 TP124 - [LAS_DUP]	0-0.1	Course	700 700	1000	2500	10000
TP125	0.01	Coerse	700	1000	2500	19933
TP125	0.740.8	Coerse	700	1000	2500	19900
9H126	0.02-0.2	Coarse	700	1000	2500	10000
TP127	0-0.1	Coerse	700	1000	2500	10000
TP127	0.3-0.4	Coarse	700	1000	2500 2500	10000
TP128 TP129	0.01	Coerse	700	1000	2500 2500	19933
TP130	0.0.1	Course	700	1000	2500	10000
TP150	0.40.5	Coerse	700	1000	2500	10000
TP131	0-0.1	Coerse	700	1000	2500	10000
TP132	0-0.1	Coarse	700	1000	2500	10000
TP133	0-0.1	Coerse	700	1000	2500	10000
TP134 TP135	0-0.1	Coerse	700	1000	2500 2500	19900
PES-ILAS DUP	0-0.1	Coerse	700	1000	1500	19993
TP156	0.0.1	Coerse	700	1000	2500	19900
TP136	0.4-0.5	Course	700	1000	2500	10000
TP137	0-0.1	Coarse	700	1000	2500	10000
TP138 TP139	0-0.1	Coerse	700	1000	2500 2500	10000
TP139	0201	Coerse	700 700	1000	2500	10000
TP140	0.0.1	Coerse	700	1000	2500	19900
TP240	0.4-0.5	Coersw	700	1000	2500	20000
TP141	0.0.1	Coerse	700	1000	2500	10000
TP142	0-0.1	Coerse	700	1000	2500	10000
TP142 TP143	0.4-0.5	Coerse	700 700	1000	2500 2500	10000
P143 - [LAB_DUP]	0-0.1	Coerse	700	1000	2500	10000
	0.2-0.3	Coerse	700	1000		10000
TP144	0-0.1	Coerse	700	1000	3500	19933
TP244	0.2-0.3	Course	700	1000	2500	10000
TP145	0.0.1	Coerse	700	1000	2500	10000
TP145 TP146	0.4-0.5	Coerse	700 700	1000	2500 2500	19900
TP146	0304	Coerse	700	1000	2500	10000
TP147	0-0.1	Coarse	700	1000	2500	10000
P147 - [LAB_DUP]	0-0.1	Coarse	700	1000	3500	10000
TP147	0.6-0.7	Coerse	700	1000	3500	19933
TP146	0.01	Coerse	700	1000	2500	10000
TP149 TP149	0.5-0.6	Coerse	700 700	1000	2500 2500	19999
TP149	0.7-0.8	Coarse	700	1000	2500	19993
TP150	0.0.1	Coerse	700	1000	2500	10000
TP151	0-0.1	Coerse	700	1000	2500	10000
TP152	0-0.1	Coarse	700	1000	3500	19933
TP153 TP153	0-0.1	Coerse	700	1000	2500 2500	19999
TP153 TP154	0.6-0.7	Coerse	700	1000	2500 2500	10000
	0-0.1	Coerse	700	1000	2500	10000
8H199	0.05-0.2	Coerse	700	1000	2500	19933
8H155	0.2-0.5	Coerse	700	1000	2500	19900
9H155	0.5-0.8	Coerse	700	1000	3500	10000
TP156 0H157	0.01	Coerse	700	1000	3500 3500	10000
9H157	0.03-0.3	Coerse	700	1000	2500 2500	19933
5H158 5H158	0.04-0.3	Coerse	700	1000	2500 2500	10000
TP150	0-0.1	Course	700	1000	2500	10000
TP159 - [LAB DUP]	0.0.1	Coerse	700	1000	2500	10000
TP160	0-0.1	Coerse	700	1000	2500	10000
TP160 TP161	0.2-0.3	Coarse	700	1000	3500 3500	10000
TP161 0H062	0.01	Coarse	700	1000	2500 2500	10000
9H162	12.14	Coarse	700	1000	2500 2500	19999
TP103	0.0.1	Coerse	700	1000	2500	10000
5007101	0.0.1	Coarse	700	1000	2500	10000
SD(IP102	0.0.1	Coarse	700	1000	2500	10000
S0UP903	0-0.1	Course	700	1000	2500	10000
	0-0.1	Coerse	700	1000	2500	10000
SDUP904						
SDUP904 SDUP905	0-0.1	Coerse	700	1000	2500	19999
SDUP904 SDUP905 SDUP906	0-0.1	Coerse	700	1000	2500	19900
S007904 S007905 S007906 S007907 S007908	0-0.1				2500 2500 2500	
SDUP904 SDUP905 SDUP906 SDUP907	0-0.1 0-0.1	Coerse	700 700	1000	2500 2500	10000

TABLE S4
SOIL LABORATORY RESULTS COMPARED TO DIRECT CONTACT CRITERIA
All data in mg/kg unless stated otherwise

Analyte PQL - Envirolab Services		C ₆ -C ₁₀ 25	>C ₁₀ -C ₁₆ 50	>C ₁₆ -C ₃₄ 100	>C ₃₄ -C ₄₀ 100	Benzene 0.2	Toluene 0.5	Ethylbenzene 1	Xylenes 1	Naphthalene 1	PID
CRC 2011 -Direct contaction		4,400	3,300	4,500 RESIDE	6,300 ENTIAL WITH AC	100 CESSIBLE SOIL-	14,000 DIRECT SOIL C	4,500 ONTACT	12,000	1,400	
Sample Reference TP101	Sample Depth 0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	1.7
TP101 TP102	0.4-0.5 0-0.1	<25 <25	<50 <50	<100 210	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1	1.6 1.5
TP102 - [LAB_DUP]	0-0.1	<25	<50	210	<100	<0.2	<0.5	<1	<1	<1	NA
TP103 TP104	0-0.1 0-0.1	<25 <25	56 <50	340 140	160 <100	<0.2 <0.2	<0.5 <0.5	<1	<1 <1	<1	1.4 2
TP105	0-0.1	<25	<50	180	<100	<0.2	<0.5	<1	<1	<1	1.4
TP106	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	1.3
TP106 TP107	0.4-0.5 0-0.1	<25 <25	<50 <50	<100 <100	<100 <100	<0.2	<0.5 <0.5	<1	<1 <1	<1	1.9
TP108	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.8
TP108 TP109	0.4-0.5 0-0.1	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1	22.5 1.4
TP110	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	2
TP110 - [LAB_DUP]	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	NA
TP111 TP112	0-0.1 0-0.1	<25 <25	<50 <50	230 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1	<1 <1	<1	1.2
TP113	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	6.4
TP113 TP114	0.9-1.0	<25 <25	<50 <50	100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1	7.9 2.7
TP115	0-0.1 0-0.1	<25	73	620	250	<0.2	<0.5	<1	<1	<1	2.7
TP116	0-0.05	<25	120	720	240	<0.2	<0.5	<1	<1	<1	4.3
TP116 TP117	0.4-0.5 0-0.1	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1	9.5 1.4
TP117 - [LAB_DUP]	0-0.1	<25	<50	120	<100	<0.2	<0.5	<1	<1	<1	NA
TP118	0-0.1	<25	<50	140	<100	<0.2	<0.5	<1	<1	<1	1.5
TP119 TP120	0-0.1 0-0.1	<25 <25	<50 <50	<100 130	<100 <100	<0.2 <0.2	<0.5 <0.5	<1	<1	<1	4.3 5.2
TP120	0-0.1	<25	<50 <50	<100	<100	<0.2	<0.5	<1	<1	<1	8.6
TP121	0-0.1	37	<50	170	<100	<0.2	<0.5	<1	<1	<1	4.3
TP122 TP123	0-0.1 0-0.1	<25 <25	<50 <50	160 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1	2.4 4.2
TP124	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	1
TP124 - [LAB_DUP]	0-0.1	<25	<50	100	<100	<0.2	<0.5	<1	<1	<1	NA
TP125 TP125	0-0.1 0.7-0.8	<25 <25	<50 <50	150 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1	<1 <1	<1	1.1
BH126	0.02-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	2.5
TP127	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	5.9
TP127 TP128	0.3-0.4 0-0.1	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1	8.7 6
TP129	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	7.5
TP130	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	9.8
TP130 TP131	0.4-0.5 0-0.1	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1	6.2 1.8
TP132	0-0.1	<25	<50	130	<100	<0.2	<0.5	<1	<1	<1	1.1
TP133	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	2.1
TP134 TP135	0-0.1 0-0.1	<25 <25	<50 <50	100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1	2.3 3
TP135 - [LAB_DUP]	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	NA
TP136	0-0.1	<25	<50	230	240	<0.2	<0.5	<1	<1	<1	1.9
TP136 TP137	0.4-0.5 0-0.1	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1	<1 <1	<1	2.2 0.8
TP138	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.8
TP139	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	2.2
TP139 TP140	0.2-0.3 0-0.1	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1	1.9 2.4
TP140	0.4-0.5	<25	<50	<100	<100	< 0.2	<0.5	<1	<1	<1	3.5
TP141	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	2.7
TP142 TP142	0-0.1 0.4-0.5	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1	4.2 7.3
TP143	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	2.9
TP143 - [LAB_DUP] TP143	0-0.1 0.2-0.3	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1	<1 <1	<1	NA 3.6
TP144	0-0.1	<25	210	1100	440	<0.2	<0.5	<1	<1	<1	1.7
TP144	0.2-0.3	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	2
TP145 TP145	0-0.1	<25 <25	<50 <50	100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1	2.1 2.5
TP146	0-0.05	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	7.2
TP146 TP147	0.3-0.4	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	7.4
TP147 TP147 - [LAB_DUP]	0-0.1 0-0.1	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1	<1	<1	2.5 NA
TP147	0.6-0.7	<25	<50	160	<100	<0.2	<0.5	<1	<1	<1	2.8
TP148	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	1.8
TP149 TP149	0-0.1 0.5-0.6	<25 <25	<50 <50	160 <100	260 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1	0.4 0.8
TP149	0.7-0.8	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.9
TP150 TP151	0-0.1	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1	0.3 1.2
TP152	0-0.1 0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.7
TP153	0-0.1	<25	<50	400	160	<0.2	<0.5	<1	<1	<1	3.2
TP153 TP154	0.6-0.7 0-0.1	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1	3.5 4
TP154 - [LAB_DUP]	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	NA NA
BH155	0.05-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	4.3
BH155 BH155	0.2-0.5 0.5-0.8	<25 <25	<50 <50	400 <100	120 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1	4.1 3.9
TP156	0.5-0.8	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.4
BH157	0.03-0.3	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	4.1
BH158 BH158	0.04-0.3	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1	4.6 8.1
TP159	0.3-0.6	<25	<50 <50	<100	<100	<0.2	<0.5	<1	<1	<1	2.9
TP159 - [LAB_DUP]	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	NA
TP160 TP160	0-0.1 0.2-0.3	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1	1.6 5.8
TP161	0.2-0.3	<25	<50 <50	140	<100	<0.2	<0.5	<1	<1	<1	2.4
BH162	0.04-0.2	<25	<50	220	<100	<0.2	<0.5	<1	<1	<1	6
BH162 TP163	1.2-1.4 0-0.1	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1	3.5 0.7
SDUP101	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	NA NA
SDUP102	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	N.A
SDUP103 SDUP104	0-0.1 0-0.1	<25 <25	<50 <50	<100 <100	<100 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1	NA NA
SDUP104 SDUP105	0-0.1	<25	<50 <50	<100	<100	<0.2	<0.5	<1	<1	<1	NA NA
SDUP106	0-0.1	<25	<50	180	<100	<0.2	<0.5	<1	<1	<1	NA
SDUP107 SDUP108	0-0.05	71 <25	150 <50	830 <100	240 <100	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	<1	NA NA
SDUP108 SDUP109	0-0.1 0-0.1	<25 <25	<50 <50	140	<100	<0.2	<0.5	<1	<1	<1	NA NA
SDUP109 - [LAB_DUP]	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	NA
SDUP110	0-0.1	<25	<50	<100	<100	< 0.2	<0.5	<1	<1	<1	NA

TABLE SS
ASSESTOS QUANTIFICATION - FIELD OBSERVATIONS AND LABORATORY RESULTS
HSL-A: Residential with garden/accessible solis; children's day care centers; preschools; and primary schools

Date Surveior		Sample	Visible ACM in	Approx. Volume		Mass ACM (g)	Mass Asbestos	[Asbestos from ACM	Mass ACM <7mm (g)	Mass Asbestos in	[Asbestos from ACM	Mass FA (g)	Mass	[Asbestos from FA in		Sample	Sample	Sample	LABORATOR Asbestos ID in soil (A54964) > 0.1g/kg	Y DATA Trace Analysis	Total	Asbestos ID in soil <0.1g/kg	>//mm	FA and AF	ACM >7mm	FA and a
		Depth	top 100mm	of Soil (L)	Mass (g)	mass ACM (g)	MOA ni (g)	in soil) (%w/w)	Mass ACM <7mm (g)	ACM <7mm (g)	<7mm in soil] (%w/w)	Mass FA (g)	Asbestos in FA (g)	soll) (%w/w)		reference	Depth	Mass (g)	Astrestos ID in soii (AS4964) >0.1g/kg	race Analysis	Asbesto: (g/kg)	Astrestos IU in soil <0.1g/kg	Estimation (g)	Estimation (g)	Estimation %(w/w)	
SAC 6/09/2023	TP101	0-0.1	No No	10	11 260	No ACM observed		0.01	No ACM <7mm observed		0.001	No FA observed		0.001	333165	TP101	0.01	715.07	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No orbital or detected	-0.1	No visible asbestos detected			0.01 <0.01	< 0.00
6/09/2023	TP101	0.1-0.2	NA	10	10,240	No ACM observed	-	-	No ACM <7mm observed	-	-	No FA observed		-		-				-					-	-
6/09/2023 6/09/2023	TP102	0-0.1	No NA	10 10	10,060	No ACM observed No ACM observed		-	No ACM <7mm observed No ACM <7mm observed	-	-	No FA observed No FA observed	-	-	333165	TP102	0-0.1	677.2	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected $$\cdots$$	No asbestos detected 	<0.1	No visible asbestos detected	-	-	<0.01	<0.00
6/09/2023 6/09/2023	TP103	0.0.1	No NA	10	10,510	No ACM observed No ACM observed	-	-	No ACM <7mm observed No ACM <7mm observed	-	-	No FA observed No FA observed	-	-	333165	TP103	0-0.1	616.35	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.00
6/09/2023	TP104 TP104	0-0.1	No NA	10	10,740	No ACM observed No ACM observed	-	-	No ACM <7mm observed	-	-	No FA observed	-	-	333165	TP104	0-0.1	855.4	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.00
6/09/2023	TP105	0-0.1	No	10	11,340	No ACM observed	-		No ACM <7mm observed No ACM <7mm observed	-		No FA observed	-	-	333165	TP105	0-0.1	620.18	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.00
6/09/2023	TP105 TP106	0.1-0.4	NA No	10	10,820	No ACM observed No ACM observed	-		No ACM <7mm observed No ACM <7mm observed	-		No FA observed No FA observed	-	-	333165	 TP106	0-0.1	636.54	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	- No asbestos detected	<0.1	No visible asbestos detected			<0.01	<0.00
6/09/2023 6/09/2023	TP106 TP107	0.1-0.2	NA.	10 10	10,110 11,360	No ACM observed No ACM observed	-		No ACM <7mm observed No ACM <7mm observed			No FA observed	-	-	333165	 TP107	0.0.1	670.01	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	 No asbestos detected	<0.1	No visible asbestos detected		-		<0.00
6/09/2023	TP108	0-0.1	No No	10	11,800	No ACM observed	-	-	No ACM <7mm observed	-	-	No FA observed	-	-	333165	TP108			No asbestos detected at reporting limit of U.1g/kg: Organic flores detected No asbestos detected at reporting limit of D.1g/kg: Organic fibres detected		<0.1	No visible aspestos detected No visible aspestos detected			<0.01	<0.00
6/09/2023	TP108 TP109	0.1-0.3	NA No	10	10,050	No ACM observed No ACM observed	-	-	No ACM <7mm observed No ACM <7mm observed	-	-	No FA observed No FA observed	-	-	333165	TP109	0-0.1	647.93	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.00
6/09/2023 6/09/2023	TP109	0.1-0.5	NA No	10	10,340	No ACM observed No ACM observed	-	-	No ACM <7mm observed No ACM <7mm observed	-	-	No FA observed No FA observed	-	-	333165	 TP111	0-0.1		No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	 No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.00
6/09/2023	TP112	0-0.1	No	10	10,230	No ACM observed	-	-	No ACM <7mm observed	-	-	No FA observed	-	-	333165	TP112	0-0.1	741.87	No asbestos detected at reporting limit of 0.1g/kg; Organic fibres detected		<0.1	No visible assestos detected			<0.01	<0.00
6/09/2023 7/09/2023		0.1-0.2	NA No	10		No ACM observed No ACM observed	-		No ACM <7mm observed No ACM <7mm observed	-		No FA observed No FA observed	-	-	333165	 TP113	0.0.1	896.09	No asbestos detected at reporting limit of 0.1g/kg; Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected			<0.01	<0.00
7/09/2023	TP113 TP114	0.1-0.9	NA No	10		No ACM observed No ACM observed	-	-	No ACM <7mm observed No ACM <7mm observed			No FA observed No FA observed		-	333165	 TP114	0-0.1	649.12	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	- No orbital distorted	<0.1	No visible asbestos detected			<0.01	<0.00
7/09/2023	TP115	0-0.1	No	10	10,060	No ACM observed	-		No ACM <7mm observed	-		No FA observed		-	333165	TP115			No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected		<0.1	No visible asbestos detected			<0.01	<0.00
7/09/2023 7/09/2023		0.1-0.6	NA No	10		No ACM observed No ACM observed	-	-	No ACM <7mm observed No ACM <7mm observed	-	-	No FA observed No FA observed	-	-	333165	TP116	0-0.05	615.67	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.00
		0-0.15	No No	10		No ACM observed No ACM observed		-	No ACM <7mm observed No ACM <7mm observed	-	-	No FA observed No FA observed		-	333165 333165	TP117 TP118	0-0.1	723.37 744.22	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected		<0.1	No visible asbestos detected No visible asbestos detected			<0.01	<0.00
7/09/2023	TP119	0-0.1	No	10	12,770	No ACM observed		-	No ACM <7mm observed	-	-	No FA observed	-	-	333165	TP119			No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected		<0.1	No visible asbestos detected		-	<0.01	<0.00
7/09/2023	TP120	0.1-0.25	NA No	10	11,570	No ACM observed No ACM observed		-	No ACM <7mm observed No ACM <7mm observed	-	-	No FA observed No FA observed	-	-	333165	TP120	0-0.1	764.18	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected			<0.01	<0.00
7/09/2023	TP120 TP121	0.1-0.3	NA No	10	11,820	No ACM observed No ACM observed	-	-	No ACM <7mm observed No ACM <7mm observed	-	-	No FA observed No FA observed		-	333165	 TP121	0-0.1	715.84	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	- No asbestos detected	<0.1	No visible asbestos detected			<0.01	<0.00
7/09/2023		0.1-0.2	NA No	10	10,560	No ACM observed	-		No ACM <7mm observed			No FA observed		-	333165	TP122	0-0.1	696.58	No asbestos detected at reporting limit of 0.1g/kg; Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.00
8/09/2023	TP124	0.0.1	No	10	10,580	No ACM observed	-		No ACM <7mm observed No ACM <7mm observed	-		No FA observed	-	-	333165	TP124	0.0.1	975.25	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected			<0.01	<0.00
8/09/2023 8/09/2023	TP124 TP125	0.1-0.3	NA. No	10	10,930	No ACM observed No ACM observed	1	-	No ACM <7mm observed No ACM <7mm observed		-	No FA observed No FA observed	+ = 1	-	333165	 TP125	0-0.1	614.93	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	- No asbestos detected	<0.1	No visible asbestos detected	=	=	<0.01	<0.00
8/09/2023	TP125	0.1-0.6	NA	10	10,760	No ACM observed	-	-	No ACM <7mm observed	-	-	No FA observed	-	-						-	-		-	-	-	-
	BH126	0.02-0.2	No NA	7	1,940 7,700	No ACM observed No ACM observed	-	-	No ACM <7mm observed No ACM <7mm observed	-	-	No FA observed No FA observed	-	-	333165	BH126	0.02-0.2	1081.34	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected \cdots	No asbestos detected 	<0.1	No visible asbestos detected	-	-	<0.01	<0.00
7/09/2023 7/09/2023	TP127 TP128	0-0.15	No No	10	10,250	No ACM observed No ACM observed	-	-	No ACM <7mm observed No ACM <7mm observed	-	-	No FA observed No FA observed	-	-	333165 333165	TP127 TP128	0-0.1	704 635.01	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected No asbestos detected	<0.1	No visible asbestos detected No visible asbestos detected	-		<0.01	<0.00
7/09/2023	TP128	0.1-0.3	NA.	10	11,310	No ACM observed	-	-	No ACM <7mm observed	-	-	No FA observed	-	-						-			-	-		
7/09/2023 7/09/2023	TP129 TP129	0.0.1	No NA	10	12,260	No ACM observed No ACM observed	-	-	No ACM <7mm observed No ACM <7mm observed	-		No FA observed No FA observed	-	-	333165	TP129	0-0.1	607.03	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected \cdots	No asbestos detected	<0.1	No visible asbestos desected	-	-	<0.01	×0.00:
7/09/2023 11/09/2023	TP130 TP131	0-0.15	No No	10	12,120	No ACM observed No ACM observed	-		No ACM <7mm observed No ACM <7mm observed			No FA observed No FA observed	-	-	333165 333165	TP130 TP131	0-0.1		No asbestos desected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected No asbestos detected	<0.1	No visible asbestos detected No visible asbestos detected			<0.01	<0.00
11/09/2023	TP132	0-0.1	No	10	10,810	No ACM observed	-		No ACM <7mm observed			No FA observed	-	-	333165	TP132	0-0.1	914.66	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected			<0.01	<0.00
11/09/2023 11/09/2023	TP133	0.1-0.2	No NA	10	10,290 10,080	No ACM observed	-	-	No ACM <7mm observed No ACM <7mm observed	-	-	No FA observed No FA observed	-	-	333165	TP133	0-0.1	546.94	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected		-	<0.01	<0.001
	TP134 TP134	0.0.1	No NA	10		No ACM observed No ACM observed		-	No ACM <7mm observed No ACM <7mm observed	-	-	No FA observed No FA observed		-	333165	TP134	0-0.1	554.32	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected			<0.01	<0.00
11/09/2023	TP135	0-0.1	No	10	10,320	No ACM observed		-	No ACM <7mm observed	-	-	No FA observed		-	333165	TP135	0-0.1		No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.00
11/09/2023	TP137	0-0.15	No No	10 10	10,370	No ACM observed No ACM observed	-	-	No ACM <7mm observed No ACM <7mm observed	-	-	No FA observed No FA observed	-	-	333165 333165	TP136 TP137	0-0.1		No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected No asbestos detected	<0.1	No visible asbestos detected No visible asbestos detected	-	-	<0.01	<0.000
	TP137 TP138	0.1-0.2	NA No	10		No ACM observed No ACM observed	-		No ACM <7mm observed No ACM <7mm observed	-		No FA observed No FA observed	-	-	333165	 TP138	0.0.1	668.4	No asbestos detected at reportina limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible aspestos detected	-		<0.01	<0.00
11/09/2023	TP139	0.0.1	No NA	10		No ACM observed No ACM observed	-	-	No ACM <7mm observed No ACM <7mm observed			No FA observed			333165	TP139	0-0.1	668.93	No asbestos desected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.00
11/09/2023	TP140	0-0.1	No	10	10,070	No ACM observed	-		No ACM <7mm observed			No FA observed	-	-	333165	TP140	0-0.1	644.86	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.00
11/09/2023 12/09/2023	TP140 TP141	0.1-0.2	NA No	10	10,250	No ACM observed No ACM observed		-	No ACM <7mm observed No ACM <7mm observed	-	-	No FA observed No FA observed		-	333165	TP141	0-0.1	546.29	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected		-	<0.01	<0.00
12/09/2023 7/09/2023	TP141 TP142	0.1-0.4	NA No	10	10,450	No ACM observed	-	-	No ACM <7mm observed No ACM <7mm observed	-	-	No FA observed No FA observed		-	333165	 TP142	0-0.1	732.78	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected			<0.01	<0.001
7/09/2023	TP142	0.1-0.3	NA.	10	11,780	No ACM observed	-	-	No ACM <7mm observed	-	-	No FA observed								-			-	-		-
11/09/2023 11/09/2023	TP143	0.1-0.3	No NA	10	10,260	No ACM observed No ACM observed	-	-	No ACM <7mm observed No ACM <7mm observed	-	-	No FA observed No FA observed	-	-	333165 333165	TP143 TP143	0.2-0.3	514.9 754.51	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected No asbestos detected	<0.1	No visible asbestos detected No visible asbestos detected			<0.01	< 0.001
8/09/2023 8/09/2023		0-0.05	No No	10	10,230	No ACM observed No ACM observed	-	-	No ACM <7mm observed No ACM <7mm observed	-	-	No FA observed No FA observed	-	-	333165 333165	TP144 TP144	0.0.1	580.86 1000.43	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected No asbestos detected	<0.1	No visible asbestos detected No visible asbestos detected	-	-	<0.01	< 0.001
8/09/2023	TP145	0-0.1	No	10	11,260	No ACM observed	-		No ACM <7mm observed			No FA observed	-	-	333165	TP145	0-0.1	638.36	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.00
8/09/2023 7/09/2023		0.1-0.2	NA No	10	11,850	No ACM observed No ACM observed	-		No ACM <7mm observed No ACM <7mm observed	-		No FA observed No FA observed	-	-	333165	TP146	0-0.05	1040.96	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.00
8/09/2023 8/09/2023	TP147 TP147	0.0.1	No NA	10	10,830	No ACM observed No ACM observed	-	-	No ACM <7mm observed No ACM <7mm observed		-	No FA observed No FA observed	-	-	333165	TP147	0-0.1	627.24	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected \cdots	No asbestos detected	<0.1	No visible asbestos detected			<0.01	<0.00:
8/09/2023	TP147	0.4-0.8	NA.	10	12,170	No ACM observed	-	-	No ACM <7mm observed	-	-	No FA observed	-	-	333165	TP147	0.6-0.7		No ashestos detected at reporting limit of 0.1g/kg: Organic fibres detected		<0.1	No visible asbestos detected			<0.01	<0.00
8/09/2023 8/09/2023		0.0.1	No NA	10 10	10,060 10,350	No ACM observed No ACM observed	-	-	No ACM <7mm observed No ACM <7mm observed	-	-	No FA observed No FA observed	-	-	333165	TP148	0-0.1	739.81	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected		-	<0.01	<0.00
8/09/2023 8/09/2023	TP148 TP149	0.4-0.5	NA No	10	10,490	No ACM observed No ACM observed	-	-	No ACM <7mm observed No ACM <7mm observed	-	-	No FA observed No FA observed	1 - 1		333165	 TP149	0-0.1	721.53	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected			<0.01	<0.00
8/09/2023		0.1-0.3	NA NA	10	11,520	No ACM observed No ACM observed	-	-	No ACM <7mm observed	-	-	No FA observed	-	-		 TP149			No asbestos desected at reporting limit of 0.1s/ks: Organic fibres detected	-			-	-		-
	TP150	0-0.1	No	10	11,720	No ACM observed	-	-	No ACM <7mm observed No ACM <7mm observed	-		No FA observed No FA observed		-	333165 333165	TP150	0.5-0.6		No asbestos desected at reporting limit of 0.1g/kg: Organic fibres detected		<0.1	No visible asbestos detected No visible asbestos detected			<0.01	<0.00
8/09/2023 8/09/2023	TP150 TP151	0.1-0.2	NA No	10	10,100	No ACM observed No ACM observed	-		No ACM <7mm observed No ACM <7mm observed	-		No FA observed No FA observed	-	-	333165	 TP151	0-0.1	700.91	No asbestos detected at reporting limit of 0.1x/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-		<0.01	<0.00
8/09/2023	TP151	0.1-0.35	NA.	10	10,100	No ACM observed	-		No ACM <7mm observed			No FA observed	-	-					No ashestos detected at reporting limit of D. Le/ke: Grasnic fibres detected		-					-
12/09/2023	TP153	0-0.1	No No	10	10,770	No ACM observed No ACM observed		-	No ACM <7mm observed No ACM <7mm observed	-	-	No FA observed No FA observed	-	-	333165 333165	TP152 TP153	0-0.1 0-0.1	739	No asbestos detected at reporting limit of 0.1g/kg: Organic flores detected No asbestos detected at reporting limit of 0.1g/kg: Organic flores detected		<0.1	No visible asbestos detected No visible asbestos detected			<0.01 <0.01	<0.00
		0.1-0.3	NA No	10		No ACM observed No ACM observed		-	No ACM <7mm observed No ACM <7mm observed	-	-	No FA observed No FA observed		-	333165	 TP154	0-0.1	941.02	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected		+	<0.01	<0.00
12/09/2023	TP154	0.1-0.25	NA No		10,200	No ACM observed	-	-	No ACM <7mm observed No ACM <7mm observed	-	-	No FA observed	-	-	333165				No asbestos detected at reporting limit of 0.1a/lag: Organic fibres detected	-	<0.1	No visible asbestos detected	-	-	<0.01	<0.00
13/09/2023	8H155	0.2-0.5	NA.	3	3,720	No ACM observed		-	No ACM <7mm observed	-	-	No FA observed	-	-	333165	BH155	0.2-0.5	736.86	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-	<0.01	<0.00
8/09/2023 8/09/2023		0-0.1 0.1-0.15	No	10		No ACM observed No ACM observed			No ACM <7mm observed No ACM <7mm observed			No FA observed No FA observed		-	333165	TP156			No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected			No visible asbestos detected			<0.01	<0.00
13/09/2023	BH157	0.03-0.3	No	2	1,900	No ACM observed No ACM observed		-	No ACM <7mm observed No ACM <7mm observed	-		No FA observed			333165 333165	BH157	0.03-0.3	963.6	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected	<0.1	No visible asbestos detected	-	-		
	TP159	0-0.15	No	1 10	10,520	No ACM observed			No ACM <7mm observed	-		No FA observed		-	333165 333165	BH158 TP159			No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected		<0.1	No visible asbestos detected No visible asbestos detected	-	-	<0.01	<0.00
11/09/2023		0.15-0.3	NA NA			No ACM observed No ACM observed		-	No ACM <7mm observed No ACM <7mm observed		-	No FA observed No FA observed								-	-	-	اتم	=	-	+-
11/09/2023	TP160			10	10,410	No ACM observed No ACM observed		-	No ACM <7mm observed No ACM <7mm observed	-	-	No FA observed	-	-	333165 333165	TP160 TP161	0-0.1	804.28	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected		No visible asbestos detected No visible asbestos detected		-	<0.01 <0.01	
11/00/	1P161					No ACM observed No ACM observed		-	No ACM <7mm observed	-	-	No FA observed	-	-						-	-		-		-	-
11/09/2023												No FA observed			333165	PH162	0.04-0.2	973.2	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No ashestos detected	-0.1				<0.01	< 0.001
	BH162	0.04-0.2	No	1	1,100	No ACM observed No ACM observed		-	No ACM <7mm observed No ACM <7mm observed	-	-	No FA observed							-	-		No visible asbestos detected		-	<0.01	-
13/09/2023 13/09/2023 13/09/2023 8/09/2023	BH162 BH162 TP163	0.04-0.2	No NA No	1 5 10	1,100 5,700 11,300	No ACM observed	-	-		-	-		-		333165	 TP163			No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	-	-	No visible asbestos detected No visible asbestos detected			-0.01 -0.01	-

Copyright JK Environments

Il data in mg/kg unless st		O TO MEPM 2013 EILs AND 90																					
I Use Category						,				YMETALSEILS		URBAN RESIDE	NTIAL AND PUBL		r				ESIA				
				рн	CEC (cmolc/kg)	Clay Content (% clay)	Arsenic	Chromium (Total)	Copper	Lesd	Nickel	Zinc	Naphthalene	DDT	C ₆ ·C ₁₀ (F1)	>C ₁₀ ·C ₁₆ (F2)	>C ₃₆ -C ₃₄ (F3)	>C ₃₄ C ₄₀ (44)	Bestere	Toluene	Ethylberger	ne Total Xylenes	96
- Envirolab Services alent Background Conce	ntration (ASC)			-	1		4 NSL	1	1 18	1 104	1	1	1 NS.	0.1 NSL	25 NSL	50 NS.	100 NS.	300 NS.	D.2 NSL	0.5	1	1	0.0 No
Sample Reference	Sample Depth	Sample Description	Soil Texture				1626							· ·	na.	na.	N.S.	NA.	- Au	74.6	- 10.	- 100	Γ.
TP101 TP101 TP100	0-0-1	Fill: Silty Clay Silts Clay	Fire Fire	7.3 7.3	20	39 39	6	40 51 34	65 72	21 13	11	36 26	<1 <1	NA NA	-05 -05	<50 <50	<100	<100	01.2 01.2 01.2	40.5 40.5	4 4 4	- d - d	<0
TP102 - [A8, BUP] TP103 - [P104 P105 P106 P106 P106 P106 P107 P106 P10	001 001 001 001 001 001 001 0405 001 001	FILSBy Clay Sity Clay Sity Clay HILSBy Clay Lifestrate Deplete FILSBy Clay FILSBy Clay FILSBy Clay FILSBy Clay Sity Clay FILSBy Clay Sity Clay FILSBy Clay	fire fire fire fire fire fire fire fire	7.3 7.3	20 20 20 20 20 20 20 20 20 20	99 99 29 29 39 99 99 29 29 39 39 39	6	34 35 37	65 72 58 90 41 58 52 72 72 100 74	21 13 20 20 20 28 21 21 21	12 10 10	26 26 36 38 32 32	41 41	<0.1 <0.1	425 425	<50 :50	<100 <100 216 216 216 346 140 140 <100 <100 <100 <100 <100 <100 <	<100 <100 <100 <100 <100 <100 <100 <100	10.2	015 015 015 015 015 015 015 015 015	41	4	2
TP104 TP105	001	Fill Silty Clay	Fre Fre	7.8	20	59 99	ŝ	34	58 52	21 21	10	39	<1	<0.1 NA	45	50 \$6 50 50 50 50 50 50 50	140	<100	40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2	00.5	d	0	1. c0, 2. 2. 2. 4. 4. 0. c0. 0.
TP106 TP106	0.4-0.5	RB: Silty Clay Silty Clay	Fire Fire	7.3	20	39	5 5	33 44	72 100		11	43 24	<1 <1	40.1 NA	435 425	-50 -50	<100	<100 <100	10.2	10.5	- 4	- d	- 0
TP107 TP108	001	Fill: Silty Clay Fill: Silty Clay	Fire Fire	7.3 7.3	20	59 39	6 11	39 46	74 81	14 21	10 11 10	39 49	<1 <1	NA <0.1	<25 <25	<50 <50	<100 <100	<100 <100	40.2 40.2	40.5 40.5	d d	4	0.
TP108 TP109	0-0.1		Fire Fre	7.3	20 20	39	8	57 50	100 140 150	10	13	30 30 30	41	NA NA	425 425	-50 -50 -50	<100	<100 <100 <100	10.2 10.2 10.2	40.5 40.5	4	4	40.
TP110 - [LAB_DUP] TP111	001	HII: Silty Clay Silty Clay Usborstery Oxplicate HII: Silty Clay HII: Silty Clay FII: Silty Clay Silty Clay FII: Silty Clay FII	Fire Fire Fire Fire Fire Fire Coarse	7.3 7.3	20	59 30	9 5	64 25	200 100	# 12 35	12		41 41	40.1 NA	425 425	<50 <50	<100 250		-03.2		d d	d d d	<0.
TP112 TP113	0-01	Fill: Silty Clay Fill: Silty Clay	Fire Fire	7.3 7.8	20	39 39	7	21 47		35 9	10 13	68 53	<1 <1	10.1 NA	<25 <25	<50 <50 <50 <50 <50 <50 <73 120	<100	<100 <100 <100 <100 <100 <100 <100 290 240	10.2 10.2	40.5 40.5	-d	e1 q	0.
TP113 TP114	0.9-1.0	Sits Clay 18: Sity Clay	Fire Fire	7.3	20	39 39	8	33	170	21 79 32 19	15	77	41 41	40.1	425 425	-50 -50	<100	<100	40.2 40.2	40.5	4	- d - d	0.5
TP208 TP3109 TP3100 TP3101-[AA5_DUP) TP3111 TP3112 TP3113 TP3113 TP3113 TP3115	0.005	Fill: Sity Sand Sity Clay	Coarse	7.3	20	39 39	5	21 47 29 33 27 29 40 40 36	61 110	19	10	30 33 68 53 280 77 140 54 27 38	41 41	NA NA	-25 -25	120	520 720 <100 <100 120 140 <100	240	02 02 02 02 02 02 02 02 02	40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5	4	- 61	6.0
TP117 TP117 - [LAB_DUP] TP118	001	Hill: Silty Clay Laboratory Duplicate	Fre Fre	7.3 7.3	20	39 39	5	36 38	66 67	16 15	10 11	38	<1 <1	40.1 10.1	+25 +25	<50 <50 130	<100 120	<100 <100 <100	10.2	*10.5	4	4	0.0
TP118 TP119 TP120 TP120	991 901 901 901 901 901 901 901 901 901	HII Silly Clas Libitaritory Displante FIE Silly Clas FIE Silly Clay FIE Silly Silly Clay FIE Silly Silly Clay	Coarse fire fire fire fire fire fire fire fir	***************************************	20 20 20 20	99 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	4	36 44	250 340 170 56 61 110 65 67 62 43 54 80	21 14 64	10	39 42 37	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<50	<100	<100	40.2 40.2	-0.5 -0.5	d d	6	0.
TP120 TP120	0.4-0.5	Sity Clay Fill: Sity Clay	Fire Fire	7.3 7.3	20	39 39	5 5	37 45 40	80	11	8 10	19	4 4	NA 10.1	425	- 50 - 50	<100	<100	10.2	40.5	- d		40.0
TP122 TP123	001	Fill Silly Clay Silly Clay	Fire Fire	7.8 7.5	20 20 20 20	39 39	6 12	40	86	18	30	42 64	<1 <1	PAA PAA	45 45	<50 <50	160 <100	<100 <100	-01.2 -01.2	-0.5 -0.5	d d	4	<0.0
TP120 TP121 TP122 TP122 TP123 TP124 TP124 - [LAB_DLP] TP124 - [LAB_DLP] TP125 TP125 TP125 BP125	001	Fill: Silty Clay Laboratory Duplicate	Fire Fire	7.3 7.3	20	39	12 10 12	140 13 26 17 31 61	120 180 140	12	9	36 19 38 42 64 27 42 33 54 22	d d	40.1 40.1	45 45	60 60 60 60 60 60 60 60 60 60 60 60 60 6	199 (100) 100 (100)	<100 <100 <100 <100 <100 <100 <100 <100	0) 2 00 2 00 2 00 2 00 2 00 2 00 2 00 2	40,5 40,5 40,5 40,5 40,5 40,5 40,5 40,5	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Color Colo
TP125 TP125	001	Fill Silty Clay	fire	7.3	20	59 59	19	31 61	240 210	12 11 21 10	11	54	41 41	NA NA	425 425	<50 <50	150	<100	0).2 o).2	40.5	d d		0.3
BHL26 TP127	0.02-0.2 0-0.1 0.3-0.4		Fire Fire	7.3	20	39	4	11	210 4 34 120	4 34 12	1 9	3 59 23	41	10.1 NA	-05 -05	-50 -50	<100	<100	10.2	10.5	4	- d	40.0
TP127 TP128	0.3-0.4	Silty Clay Fill: Silty Clay	Fire Fire	7.3 7.3	20	59 39	7	35 71 45 53	120 69	11	13		<1	NA 40.1	<25 <25	<50 <50	<100 <100	<100	42.2	40.5 40.5	d d	- d - d	<0.0
TP139 TP130	001	Fill: Silty Clay Fill: Silty Clay	Fire Fire	7.3	20	39 39	9	32	69 60 80 160	18	12 15 19	35	41 41	60.1	- d5 - d5	50	<100	<100	102	40.5	4	d d	0.
TP151	0.01	Fill: Silly Clay	Fre	7.3	20	39	6	110 18 NA 16 25		470	9	190	<1	NA NA	<25 NA	<50 84	<100	<100	-0.2 NA	-0.5 NA	<1	41 NA	<0.
TP125 BHLSS TP127 TP127 TP127 TP128 TP119 TP119 TP119 TP119 TP119 TP121 TP121 TP121 TP122 TP122 TP122 TP125 TP125 TP125 TP126 TP126 TP126 TP126 TP126 TP126	001 001 001 0405 001 0203 001 001 001 001 001	FILS Sity Clay Sity Clay FILS Sity Clay FILS Sity Clay FILS Sity Clay FILS Sity Clay Sity Clay Sity Clay FILS S	Fire Fire Fire Fire Fire Fire Fire Fire	7.3 7.3	20	39 39	5 <4	16 25	NA 210 220 160 190 230	12 470 9 32 120 64 57 32 37		39 33 31 24 190 NA 68 290 120 71 20	<1	<0.1 <0.1	<25 <25	450 450	130 <100	<100 <100 <100 <100 NA <100 <100 <100 <100 <100 <100 <100 <10	40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2	-0.5 -0.5	d d	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<0.0
TP134 TP135	001	Fill Clayey Sit: Fill: Silly Clay	fire Fire	7.5 7.3	20	59 39	5 44	22 25	160 190	64 37	8	120 71	<1 <1	NA 10.1	<25 <25	<50 -50	100 <100	<100 <100	+0.2 +0.2	40.5 40.5	<d 4<="" td=""><td>41</td><td>0.7</td></d>	41	0.7
TP136 TP136	001	HII: Sity Clas Liboursony Duplicate FIE: Sity Clas JWA Archistic HII: Sity Clas JWA Sity Clas HII: Sity Clas Sity Clay HII: Sity Clas Sity Clay FIE: Clavey Sit Sity Clay FIE: Clavey Sit Liboursony Duplicate FIE: Sity Clas HII: Sity Sand HII: Sity Sand HII: Sity Sand	Fire Fire	7.3	20	39 39	5	15	95	32 37	7	100	4	NA NA	- Q5 - Q5 - 26	-50 -50	230	240	40.2 40.2	-0.5	4	d d	0.0
	001	Fill: Silty Clay	Coarse Fire Fire	7.3	20 20 20	39	5	15 26 20 26 21 37 21 20 12 31 110 20 21 20 21 21 21 20 21 21 22 21 22 21 22 21 21 22 21 22 22	210 210	26 43	9	93 67 100	4	40.1 NA	425	-50 -50 -50	<100 <100 <100	<100 <100 <100 <100	40.2 40.2 40.2	40.5 40.5	4	- d	0.0
TP139 TP139	0.01	Fill: Silty Clay Silty Clay	Fire Fire	7.3 7.5	20 20 20 20 20 20 20 20 20 20 20 20 20 2	39 39	9	21 37	210 310	98 180	8 15	100 230 400	<1 <1	e0.1 NA	<25 <25	<50 <50	<100	<100 <100	-01.2 -03.2	40.5 40.5	<1	d d d	<0.7
TP140 TP140	0.4-0.5	HII: Silty Clay Silty Clay	Fire Fire	7.3	20	39	13	21	95 450	23 6	12	76 51	4	NA NA	+25 +25	-50 -50	<100	<100 <100	10.2	10.5	4		40.0
TP142 TP142	001	Fill Clayey Silt Fill Silty Clay	Fre Fre	7.3	20	39	6 7	31 110	54 150	27	7	29	4	NA NA	45	<50 <50	<100	<100	012	40.5	d d	9	2
172137 172138 172139 172139 172140 172140 172140 172141 172143 172143 172144 172144 172144 172144 172145 172145 172145 172145 172145 172145 172145 172145 172146	001	Filk Clayey Sile Laboratory Duplicate	Fire Fire Fire Fire Fire Fire Fire Fire	7.3	20	39 39	5	20 21	28 54 150 150 160	26 43 98 189 23 6 32 27 14 15 17 11	7	76 51 46 28 23 40 41 32 32	<1 <1	40.1 40.1	425 425	-50 -50 -50 -50 -50 -50 -50 -50 -50	<100 <100 <100 <100 <100 <100 <100 <100	<100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100	012 02 02 02 012 012 012 012 012 012 012	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	d d	d d	0.5
TP143 TP144	02-03	Fill: Silty Clay Fill: Silty Sand	Coarse	7.3 7.3	20	59 39	5	27	50 6	11 54	12 8	32	<1 <1	NA NA	<25 <25	210	<100 1100	440	01.2 02.2	-0.5 -0.5	4	4	0.0
TP145 TP145	001	Filt Sity Clayer Sand Filt Sity Gravelly Clay Sity Clay	Fire Fire	7.3	20 20 20	39	6	10 44 81	58 94 170	18	10	26	41	10.1 NA	425 425	-50 -50 -50	1100 <100 100	<100 <100 <100	40.2 40.2 40.2	40.5 40.5	4	- d	0.0
TP145 TP146 TP146	0.005	Filt Gravelly Sity Clay Sity Clay	fire Fire	7.3	20 20 20	99 39	7 8	53 21 29		12 14 4	13	26 20 51 25 26	<1 -1	NA NA	45		<100		×3.2	+0.5 +0.5	d d	41	<0.0 +0.0
TP147 TP147 · [LAB_DUP]	0-01	Filt Clayey Silt Laboratory Duplicate	Fire Fire	7.3	20	39 39	- 64 - 64	19 14	13	13 12 48	4	26 25	<1 <1	40.1 40.1	- 25 - 25	<50 <50	<100	<100 <100	-01.2 -01.2	-0.5 -0.5	<1	e1 e1	0.1
TP248	001	FIT Sandy Clay FIT Clayey Sit	Fire Fire	7.3	20	39	-4	12	14	8	3	25	41	40.1	425	-00 -00	<100	<100	40.2	40.5	4		403
TP149 TP149	001 001 001 010 010 010 010 010 010 010	Fill: Sity Clay Sity Clay	fire fire fire fire fire fire fire fire	7.8 7.5	20	89 99	12 9	12 19 62 110 46 21	120	29 14	24 22	25 170 25 57 68 39 36	<1 <1	NA NA	45 45	60 60 60 60 60 60 60 60 60 60 60	<100	<100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100	02 02 02 02 02 02 02 02 02 02 02	40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5	4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.8
TP150 TP151	001	FIE: Silty Clay FIE: Silty Clay	Fire Fire	7.3 7.3	20 20	39	8 7	46 21	86 11	17	14	36 19	41 41	+0.1 NA	425 425	-50 -50	<100 <100	<100 <100	10.2 10.2	+0.5 +0.5	-d		COLUMN C
TP146 TP147 TP147-[L0.8], DLP] TP147 TP147 TP146 TP149 TP149 TP149 TP149 TP150	001	Fill: Sity Clay Fill: Sity Sandy Clay Sity Clay	Fire Fire	7.3 7.5	20 20 20 20	39 39	5	29 120 18 22	57 39 160	14 20 11	17 8 16	44 34 23	4	NA NA	45 45	<50 <50	<000 400	<100 \$60 <100	-01.2 -01.2 -01.2	-0.5 -0.5	d d	d d	15
TP154 TP154 - ILAB DUPI	06-0.7 0-0.1 0-0.1 0.05-0.2 0.2-0.5 0-0.1 0.03-0.3 0.04-0.3 0.3-0.6 0-0.1 0-0.1	FIT Sity Clays Care (FIT Sity Clays Care) FIT Sity Care Sity Clay Sity Clay FIT Grands Sity Clay FIT Grands Sity Clay FIT Clay Sity Clay FIT Clay Sity Clay FIT Clay Sity Clay FIT Clay Sity Clay FIT Sity Sity Sity FIT Sity Sity FIT Sity Sity Sity FIT Sity	Fire Coarse Coarse	7.3 7.3	20	10 10 10 10 10 10 10 10	ś	18 22	15 13 130 14 25 120 180 86 11 57 88 150 27 12 140 140 21 21 220	11	5	23 21 24	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	40.1 40.1	- 25 - 25	60 60 60 60 60 60 60 60 60 60 60 60 60 6	< 00	400 400	#0.2 #0.2 #0.2 #0.2 #0.2 #0.2 #0.2 #0.2	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	d	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12
8H155 8H155	0.05 0.2	Fill: Si by Sand Fill: Sifty Clay	Coarse Coarse Fire Fire Fire Fire Fire Fire Fire Fir	7.3 7.5	20 20 20 20 20 20 20 20 20 20 20 20 20 2	59 39	10	13	12 140	- 5	19	6	<1 <1	Polis Polis	<25 <25	<50 <50	<100 400	<100 120	01.2 01.2	-0.5 -0.5	4	4	13
8H155 TP156 8H157	0.01	Fill Sity Clay Fill Sity Clay	Fire Fire	7.3 7.8	20	39	8 10	110 48 12 19 15	160 160 21	77 15 39 16 26 3	21 16 8	110 25 110 290 39 33 37	4 4	NA NA c0.1	45 45 45	-50 -50	<100 <100	<100 <100	40.2 40.2 61.2	40.5 40.5	4 4	4 4	0.8
TP154 [AB DLP] BH155 BH155 BH155 BH156 BH157 BH159 BH157 BH158 BH157 BH158 BH158	0.04-0.3	Fill Sity Sandy Clay FW Androits	fire Coarse	7.3 7.3	20	39 39	10	19		26 3	9	39	4	PAA PAA	45 45	<50 -50	<100	<100	40.2 40.2	40.5	41	41	6.
TP159 TP159 - [LAB_DUP] TP160	0-01	Filt Clayer Sit Laboratory Duplicate	Fire Fire	7.3 7.8	20	39 39	64 64	11 14	19 19	13 14	4	35 77	<1 <1	+0.1 +0.1	- 05 - 05	<50 <50	<100	<100	10.2 40.2	40.5 40.5	-d	- d - d	<0.0
TP160	0.2-0.3	Fill Silty Clay Silty Clay	Fire Fire	7.3 7.3	20	39 39	6	14 19 18 21	270 440 160	14 69 3	30	77 22 57	4	NA NA	45 45	<50 <50 <50	<100	<100 <100 <100	40.2 40.2	40.5 40.5	- d	0 0 0 0 0 0 0 0 0 0 0 0	40.
8H162 8H162	0.04-0.2	FII: Sity Clay Sits Clay	Fire Fire	7.8 7.3	20	39 39	7 7		250 130	12	a 11	26 21 22	41 41	NA NA	45	<50 <50	220	<100	o1.2	<0.5	d d	- ei - ei	1 0
TP161 8H162 8H162 TP163 SDUP301 SDUP302 SDUP303 SDUP303 SDUP303 SDUP305 SDUP305 SDUP305	001 00402 1214 001 001 001 001 001 001 001 001	HI Sity Clay Sity Clay Fill Sity Clay Duplicate of TP110 Duplicate of TP110 Duplicate of TP107 Duplicate of TP107 Duplicate of TP107 Duplicate of TP107	Fre fire Fre Fre fire fire Fre Fre	7.3 7.3	20	39	6	17 74 61 22 21 64 63	150	13	14 10	22 71	41 41	+0.1 +0.1	425 425	-50 -50 -50 -50 -50 -50 -50	<100 <100	<100 <100 <100 <100 <100 <100 <100 <100	-0.5	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	41	d d	0.1
SOUF302 SOUF303	0-0-1	Duplicate of TP111 Duplicate of TP110	Fire Fire	7.3 7.3	20	39 39	5 16	21 64	120 260	7	14	34	4	60.1	45 45	<50 <50	<100	<100	40.2 40.2 40.2	-0.5 -0.5	d d	4	<0.3
50UF304 50UF305 50UF305	001	Duplicate of TP100 Duplicate of TP107	Fire Fire	7.3	20	39	5	55 39	99 52	15	11	41 21	41 41	NA NA	Ø Ø5		<100	<100	40.2 40.2 40.2 40.2	40.5	d d	d d	0.2
SOUP307 SOUP308	0 0.05	Duplicate of TP116		7.8 7.3	20	99 30	6	33 49	140 69 52 80 65	21 21 16	10	49 27	4	NA 40.1	n -25	150 <50		240		-0.5 -0.5	4	4	0.0
SOUP209 SOUP109 - [JAB_DUP]	001 001 001	Duplicate of TP345 Duplicate of TP343 Laboratory Duplicate Duplicate of TP348	Fire Fire	7.3	20	39	5	20 20	150 140	16 16	7	33 40	4 4	40.1 40.1 NA	45 45	50	<100 140 <100 <100	<100 <100 <100 <100	40.2 40.2	40.5	4	d d	0.7
SOUP 110 al Number of Samples	001	AURCHEST IP138	hre	7.8 111 7.3	111	111	110	110	110 500	67 111 490	110	110 400	209	46	109	109 210	100 100	229 440	109	100	201 4PQL	109	10
onan Value	r			7.3	20	- 29	23	140	500	470	30	400	oru.	<pul< td=""><td>- /1</td><td>210</td><td>1300</td><td>440</td><td>orgi.</td><td>org.</td><td>qut</td><td>SPUL</td><td>15</td></pul<>	- /1	210	1300	440	orgi.	org.	qut	SPUL	15

Sample Reference	Sample Depth	Sample Description	Soil Texture	pМ	(creak/kg)	Clay Content (% clay)	Arsenic	Oversiem	Copper	Lead	Nexel	Zinc	Naphthalene	DDT	C ₂ -C ₂₀ (F1)	HC ₁₀ +C ₁₀ (F2)	>C ₂₀ <0,031	HC _M -C ₄₀ (NI)	Bonzene	Toluene	Ethylberoone	Total Xylenes	
TP202	0-01	FIE Silty Clay	fire	7.3	22	30	100	410	250	1200	290	720	170	-	180	120	1933	5600	65	105	125	45	
TP101 TP100	0.4-0.5	Silty Clay Fill Silty Clay	fire fire	7.3	20 20	39	100	410	250	1200	290	790	170	180	180	120	1300	5600 5600	65	105	125	45	
TP102 - [LAB_DUP]	0-0-1	Laboratory Duplicate	fire	7.3	20	39	100	410	230	1200	290	780	170	190	180	120	1300	5600	65	105	125	45	1
TP108	0-0-1	Fill: Silty Clay	Fire	7.3	50	39	100	410	230	1200	290	780	170		180	120	1300	5600	65	105	125	45	į.
TP106 TP105	0-01	FII: Silty Clay FII: Silty Clay	Fire	7.3	20	39	100	410	230	1200	290	780	270 270	190	180	120	1300	5600 5600	65	105	125	45	1
TP106	001	Fil: Sity Clay	Fire	7.3	20	39	100	410	210	1200	290	700	170	100	180	120	1300	5600	65	105	125	45	1
TP106	0.4-0.5	Sity Clay	fire	7.3	20	30	100	410	210	1200	290	750	170	-	180	120	1300	5600	65	105	125	45	i .
TP107	0.01		fire	7.5	20	39	100	410	250	1200	290	790	170		180	120	1300	5600	65	105	125	45	1
TP108 TP108	0.01	Fill: Silty Clay Silty Clay	Fire Fire	7.3	20	39	100	410	230	1200	290	790	170	180	180	120	1300	5600 5600	65	105	125	45	
TP106	0.4-0.5	Fill: Silty Clay	Fire	7.3	20	39	100	410	230	1200	290	790	170	-	180	120	1300	5600	66	105	125	45	1
TP110	0-01	Sity Clay	Fire	7.3	20	39	100	410	230	1200	290	780	270 170	190	180	120	1300	5600	65	105	125	45	
TP110 - [LAB_DUP]	0.01	Laboratory Duplicate	Fire	7.3	20	39	100	410	210	1200	290	790	170	1.90	150	120	1333	5600	65	105	125	45	
TP212	001	RESBy Cay	Fire	7.3	20	39	100	410	210	1200	290	700	130	190	180	120	1300	5600	65	105	125	45	1
TP113	001	Fill Sity Clay	fire	7.3	20	39	100	410	250	1200	290	790	170	100	180	120	1300	5600	65	105	125	45	1
TP113	0.9-1.0	Sity Clay	Fire	7.3	20	39	100	410	230	1200	290	790	170		180	120	1300	5600	65	105	125	45	i .
TP114	0-0-1	FILSHly Clav	Fire	7.3	20	39	100	410	230	1200	290	790	170	19)	180	120	1300	5600	65	105	125	45	1
TP115 TP116	0-0-1	Fill: Sity Sand Fill: Sity Sand	Coarse	7.3	20	39	100	410	230	1200	290	760 760	170	190	180	120	300 300	2800	50	85	70	105	
TP116	0.4-0.5	Sity Clay	Fire	7.5	20	39	100	410	210	1200	290	790	170	-	180	120	1300	5600	65	105	125	45	1
TP117	0-0.1	RE:Sity Clay	Fire	7.3	20	39	100	410	210	1200	290	700	170	190	180	120	1333	5600	65	105	125	45	1
FP117 - [LAB_DUP]	001	Laboratory Duplicate	fire	7.3	20	39	100	410	210	1200	290	760	170	180	180	120	1300	5600	65	105	125	45	
TP118	0.01	RII: Silly Clay	Fre	7.5	20	39	100	410	250	1200	290	790	170	-	180	130	1300	5600	65	105	125	45	1
TP120	0-01	Fill: Silty Clay Fill: Silty Clay	Fire Fire	7.3	20	39	100	410 410	250 250	1200	290	790 790	270 170	180	180 180	120 120	1300	5600 5600	65	105	125 125	45	-
TP120	0.4-0.5	Silty Clay	Fire	7.3	20	39	100	410	230	1200	290	780	170		180	120	1300	5600	65	105	125	45	i .
TP121	0-0.1	FIE: Sity Clay	Fire	7.3	20	39	100	410	230	1200	290	790	170	190	180	120	1300	5600	65	105	125	45	1
TP122	0-0.1	Fil: Silty Clay	Fire	7.3	20	39	100	410	230	1200	290	790	170		180	120	1300	5600	65	105	125	45	1
TP123	0-01	Sity Clay Filt: Sity Clay	Fire Fire	7.3	20	39	100	410	210	1200	290	790	170	180	180	120	1300	5600	65	105	125	45	
TP324 P124 - ILAB DUM	001	Lideoratory Duplicate	fire	7.3	20	39	100	410	230	1200	290 290	750	170	190	180	120	1300	5600	65	105	125	45	1
P124 - [LAB_TFRF]	0-0.1	Laboratory Triplicate	fire	7.3	20	39	100	410	250	1200	290	790	-		-		-			-			i
TP125	0.01	Fill: Silty Clay	fire	7.3	20	39	100	410	250	1200	290	790	170		180	120	1300	5600	65	105	125	45	İ
TP125	0.7-0.8	Sity Clay	Fire	7.3	20	39	100	410	230	1200	290	780	170		180	120	1300	5600	65	105	125	45	1
8H126 TP327	0.02-0.2	Fill: Sandy Silty Clay Fill: Silty Clay	Fire Fire	7.3	20	39	100	410	230 230	1200	290 290	760 760	170	190	180 180	120	1300	5600 5600	65	105	125	45	1
TP127	0.01	Fill: Silty Clay Silty Clay	Fire	7.3	20	39	100	410	210	1200	290	750	170	-	150	120	1300	5600	65	105	125	45	1
TP12E	0.01	Fill: Silty Clay	Fire	7.3	20	39	100	410	210	1200	290	750	170	1393	180	120	1933	5600	65	105	125	45	1
TP129	0.01	RESILY Clay	Fire	7.3	20	39	100	410	230	1200	290	780	170		180	120	1300	5600	65	105	125	45	1
TP130	0.01	Fill: Silty Clay	fire	7.3	20	39	100	410	230	1200	290	790	170	180	180	120	1300	5600	65	105	125	45	1
TP130 TP131	0.4-0.5	Silty Clay	Fire Fire	7.8	20	39 39	100 100	410	250 230	1200	290	790 790	170		180 180	120	1300	5600 5600	65	105	125 125	45 45	1
TP131	0.2-0.3	Fill: Silty Clay XW Andesite	Fire	7.3	20	39	100	410	250	1200	290	790	170	-	180	120	1300	5600	65	105	125	45	1
TP132	001	Filt: Silty Clay	Fire	7.3	20	39	100	410	210	1200	290	750	170	190	180	120	1300	5600	65	105	125	45	1
TP233	001	Fill: Silly Clay	Fire	7.3	20	39	100	410	210	1200	290	750	170	190	160	120	1300	5600	65	105	125	45	1
TP134	0.01	Fill: Clayey Silt	Fire	7.3	20	39	100	410	210	1200	290	790	170		180	130	1.930	5600	65	105	125	45	
TP155 135 - [LAB_DUP]	001	Fill: Silty Clay	Fire Fire	7.3	20	30	100	410 410	230 230	1200	290 290	750 750	170 170	190	180	120 120	1900	5600 5600	65	105	125 125	45	-
135 (LAS_DUP) TP196	001	Laboratory Duplicate RII: Sity Clay	Fire	7.3	20	39	100	410	250	1200	290	790	170	180	180	120	1300	5600	65	105	125	45	1
TP136	0.4-0.5	XW Andesite	Coarse	7.3	20	39	100	410	230	1200	290	780	179	-	180	120	300	2800	50	85	70	105	1
TP137	0-0.1	FIE: Silty Clay	Fire	7.3	20	39	100	410	230	1200	290	780	170	130	180	120	1300	5600	65	105	125	45	1
TP138	0-0-1	Fill: Silty Cay	Fire	7.3	20	39	100	410	230	1200	290	760	170		180	120	1300	5600	65	105	125	45	1
TP139 TP139	0.01	Fill: Silty Clay Silty Clay	Fire	7.3	20	39	100	410	210 210	1200	290 290	760	170	180	190	120	1300	5600	65	105	125	45	1
TP240	0-0.1	Fill: Silty Clay	fire	7.5	20	30	100	410	230	1200	290	790	170		180	120	1300	5600	65	105	125	45	1
TP140	0.4-0.5	Sity City	fire	7.3	20	39	100	410	250	1200	290	780	170	-	180	120	1300	5600	65	105	125	45	
TP141	0.01	Fill Clayey Sit	Fire	7.3	20	39	100	410	230	1200	290	790	170	19)	180	120	1300	5600	65	105	125	45	i .
TP142	0-0.1	Fill: Silty Clay	Fire	7.3	20	39	100	410	230	1200	290	790	170		180	120	1300	5600	65	105	125	45	
TP142 TP143	0.4-0.5	Sity Clay	Fire	7.3	50	39	100	410	230	1200	280	780 780	170	190	180	120	1300	5600 5600	65	105	125	45	
DAR- DAR DUP	0-01	Filt Clayey Silt Laboratory Duplicate	Fire	7.3	20	39	100	410	230	1200	290	780	170	190	180 180	120	1300	5600	65	105	125	45	+
TP243	0.2-0.3	Fill: Silty Clay	Fire	7.3	20	39	100	410	230	1200	290	700	170		180	120	1300	5600	60	105	125	45	1
TP244	0.01		Coarse	7.3	20	30	100	410	250	1200	290	750	170	-	180	120	300	2800	50	85	70	105	1
TP144	0.2-0.3	FIT Sity Clayey Sand	Coarse	7.5	20	39	100	410	250	1200	290	790	170		180	120	300	2800	50	85	70	105	
TP145 TP145	0.01	Filt Sity Gravelly Clay Sity Clay	Fire	7.3	20	39	100	410	230	1200	290	790	170	190	180	120	1300	5600 5600	65	105	125	45	
TP145 TP146	0.4-0.5	Sity Clay Filt Gravelly Sity Clay	Fire	7.3	20	39	100	410	230	1200	290	790	170	-	180	120	1300	5600 5600	65	105	125	45	1
TP146	0.3-0.4		Fire	7.3	20	39	100	410	230	1200	290	780	179	-	180	120	1300	5600	65	105	125	45	1
TP147	0.01	Filt Clayey Silt	Fire	7.3	20	39	100	410	210	1200	290	790	170	1.90	150	120	1300	5600	65	105	125	45	1
D47 - [LAB_DUP] TP147	001	Laboratory Duplicate	Fire	7.3	20	39	100	410	230	1200	290	700	170	1.90	180	120	1300	5600	65	105	125	45	1
TP147 TP148	0.6-0.7	Fit Sandy Clay Fith Clayey Sit	fire fire	7.3	20	30	100	410	250 250	1200	290	760 760	170	180	180 180	120 120	1300	5600 5600	65	105	125 125	45	1
TP148	0.01	ELSIN Car	Fire	7.3	20	39	100	410	230	1200	290	790	120	1.00	180	120	1300	5600	65	105	125	45	1
TP149	0.5-0.6	FIT: Silty Clay	Fire	7.3	20	39	100	410	230	1200	290	780	170		180	120	1300	5600	65	105	125	45	i
TP149	0.7-0.8	Silty Clay	Fire	7.3	50	39	100	410	230	1200	290	780			180	120	1300	5600	65	105	125	45	1
TP150	0-01	Fill: Sity Cay	Fire	7.3	20	39	100	410	230	1200	290	780	170	190	180	120	1300	5600	65	105	125	45	1
TP151 TP152	001	FIE Silty Clay	Fire	7.3	20	39	100	410	210	1200	290	790	170	192	180	120	1300	5600	65	105	125	45	1
TP153	001	Fill: Sity Sandy Clay	fire	7.3	20	30	100	410	250	1200	290	750	170	- 100	180	120	1300	5600	65	105	125	45	1
TP158	0.6-0.7	Silty Clay	fire	7.5	20	39	100	410	250	1200	290	790	170		180	120	1300	5600	65	105	125	45	i
TP254	0.01	Filt: Gravelly Clayey Sans	d Coarse	7.3	20	39	100	410	250	1200	290	780	170	180	180	120	300	2800	50	85	70	105	ļ.
154 - [LAB_DUP]	0-0-1	Laboratory Duglicate	Coarse	7.3	20	39	100	410	230	1200	290	780	170	197	180	120	300	2800	50	85	70	105	1
8H155	0.05-0.2	Fill: Sity Sand Fill: Sity Clay	Coarse Fine	7.3	20	39	100	410	230	1200	290	780	170		180	120	300	2800	50 65	85 105	70 125	105 45	1
84055	0.2-0.5 0.5-0.8	Sibr Clay	Fire	7.8	20	39	100	410	230	1200	290	790	170		150	120	1300	5600	65	105	125	45	1
TP156	0-01	FIE: Silty Clay	fire	7.3	23	39	100	410	210	1200	290	700	170	-	180	120	1333	5600	65	105	125	45	1
BH157	0.03-0.3	DB:SRv Clev	fire	7.3	20	39	100	410	230	1200	290	750	170	180	180	120	1300	5600	65	105	125	45	1
BH158	0.04-0.3	Fill: Sity Sandy Clay	fire	7.3	20	39	100	410	230	1200	290	790	130		180	120	1300	5600	65	105	125	45	1
8H158	0.3-0.6	XW Andesite FIE Cover Sit	Coarse	7.3	20	39	100	410	250	1200	290	790	170	180	180	120	1300	2800 5600	50 65	85	70 125	105	1
TP159	001	Fill: Clayey Silt Laboratory Duplicate	Fire Fire		30	39		410	230	1200	290	790	170	190	180	120		5600 5600	65	105		45	1
159 - [LAB_DUP] TP160	0-0.1	Fill: Silty Clay	Fire	7.3	20	39	100	410	230	1200	290	790	170 170	100	180	120 120	1300	5600	65	105	125 125	45	1
TP160	0.2-0.3	Silty Clay	Ere	7.3	20	39	100	410	230	1200	290	750	170		150	120	1300	5600	65	105	125	45	1
TP161	0-01	FIE Silty Clay	Fire	7.3	20	39	100	410	210	1200	290	700	170	190	150	120	1300	5600	65	105	125	45	1
BH162	0.64-0.2	Fill: Silty Clay	Fire	7.5	20	39	100	410	250	1200	290	790	170		180	120	1500	5600	65	105	125	45	1
BH162 TP163	1.2-1.4	Silty Clay Fill: Silty Clay	Fre	7.3	20	39	100	410	230 230	1200	290	790	170	180	180 180	120	1300	5600	65	105	125	45	1
TP163 SQUP101	001	Pupi kate of TP112	Fire Fire	7.3	20	39	100	410	230	1200	290	790	170	180	180	120	1300	5600 5600	65	105	125 125	45	1
SOLIESSO.	0-01	Duplicate of IP112 Duplicate of IP111	Fire	7.3	20	39		410	230	1200	290	790	170		180	120	1300	5600	65	105	125	45	1
SOUP303	001	Duplicate of TP110	Fire	7.3	20	39	100	410	230	1200	290	780	170	190	180	120	1300	5600	65	105	125	45	1
SOUP204	0.01	Duplicate of TP109	Fire	7.3	20	39	100	410	210	1200	290	750	120	-	160	120	1300	5600	65	105	125	45	1
SOUP205	001	Duplicate of TP107	Fire	7.3	20	39	100	410	210	1200	290	750	170		150	120	1300	5600	65	105	125	45	1
5007005	0.01	Duplicate of TP102	Fire	7.3	20	39	100	410	250	1200	290	790	170		180	120	1900	5600	65	105	125	45	1
SOUP307 SOUP308	0-0.05	Duplicate of TP116	Coarse	7.3	20	39	100	410	230	1200	290	790	270	180	180	120	300	2000	50	85	125	105	1
SOUP308 SOUP309	001	Duplicate of TP145 Duplicate of TP143	Fire Fire	7.3	20	39	100	410	250 230	1200	290 290	790	170	190	180 180	120 120	1300	5600 5600	65	105	125	45	1
P109 - [UA9_DUP]	001	Laboratory Duplicate	Fire	7.3	20	39	100	410	230	1200	290	790	170	190	180	120	1300	5600	65	105	125	45	1
SDUP110	441	Duplicate of TP138	Ere.	7.3	20	39	100	410	230	1200	290	700	120		180	120	1300	5000	60	100	11.7	- 7	1

TABLE S7
SOIL LABORATORY RESULTS COMPARED TO WASTE CLASSIFICATION GUIDELINES
All data in mg/kg unless stated otherwise Total PCBs C₆-C₉ C₉₀-C₁₄ TRH C₁₅-C₂₈ Total is B(a)F Total C20-C36 ASBESTOS FIBRE Zinc C10-C3 0.4 20 100 80 400 1 40 1050 160 4200 0.05 0.8 10 3.2 23 PQL - Envirolab Services General Solid Waste CT1 General Solid Waste SCC1 Restricted Solid Waste CT2 Restricted Solid Waste SCC2 0.1 4 50 16 NSL NSL NSL NSL 0.1 50 50 50 50 NSL NSL NSL NSL 50 10,000 10,000 40,000 40,000 0.5 288 518 1,152 2,073 4 100 500 400 2000 NSL NSL NSL NSL 1 100 1900 400 7600 1 100 1500 400 0.1 250 250 1000 1000 0.1 50 50 50 50 25 650 650 2600 2600 0.2 10 18 40 72 1 600 1,080 2,400 4,320 100 200 200 800 800 1 1,000 1,800 4,000 7,200 NSL NSL NSL NSL 0.1 60 108 240 432 Sample Reference Sample Description Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. Stay, Clay

Fig. S Not Detected No. 10 Detected N | MARINE | M 0.4015
0.0016
0.0016
0.0016
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0.0017
0. 在1990年代, | 100 [LAB_DUP] [LAB_DUP] [LAB_TRIP] [LAB_DUP] [LAB_DUP] DUP101 DUP101- [LAB_DUP] DUP102 DUP103 DUP104 - [LAB_DUP] 110 23 110 0.4 110 140 110 30 110 400 44 <PQL 6 <POL 110 500 111 470 110 0.5 109 200 109 15 47 <POI 47 0.5 109 <PQL 109 120 109 660 109 770 109 1550 109 <PQL Total Number of Samples Maximum Value

Concentration above the CT1
Concentration above SCC1
Concentration above the SCC2
Concentration above PQL

TABLE S8 SOIL LABORATORY TCLP RESULTS All data in mg/L unless stated otherwise

			Arsenic	Cadmium	Chromium	Lead	Mercury	Nickel	B(a)P
PQL - Envirolab Serv	vices		0.05	0.01	0.01	0.03	0.0005	0.02	0.001
TCLP1 - General Sol	id Waste		5	1	5	5	0.2	2	0.04
TCLP2 - Restricted S	Solid Waste		20	4	20	20	0.8	8	0.16
TCLP3 - Hazardous '	Waste		>20	>4	>20	>20	>0.8	>8	>0.16
Sample Reference	Sample Depth	Sample Description							
TP101	0-0.1	Fill: Silty Clay	NA	NA	NA	NA	NA	NA	<0.001
TP102	0-0.1	Fill: Silty Clay	NA	NA	NA	NA	NA	NA	<0.001
TP103	0-0.1	Fill: Silty Clay	NA	NA	NA	NA	NA	NA	<0.001
TP104	0-0.1	Fill: Silty Clay	NA	NA	NA	NA	NA	NA	<0.001
TP105	0-0.1	Fill: Silty Clay	NA	NA	NA	NA	NA	NA	<0.001
TP113	0.9-1.0	Silty Clay	NA	NA	NA	NA	NA	NA	<0.001
TP118	0-0.1	Fill: Silty Clay	NA	NA	NA	NA	NA	NA	<0.001
TP120	0-0.1	Fill: Silty Clay	NA	NA	NA	NA	NA	NA	<0.001
TP131	0-0.1	Fill: Silty Clay	NA	NA	NA	0.2	NA	NA	NA
TP133	0-0.1	Fill: Silty Clay	NA	NA	NA	0.04	NA	NA	NA
TP134	0-0.1	F: Clayey Silt	NA	NA	NA	NA	NA	NA	<0.001
TP139	0-0.1	Fill: Silty Clay	NA	NA	NA	<0.03	NA	NA	NA
TP142	0-0.1	Fill: Silty Clay	NA	NA	NA	NA	NA	NA	<0.001
TP142 - [LAB_DUP]	0-0.1	Laboratory Duplicate	NA	NA	NA	NA	NA	NA	<0.001
TP147	0.6-0.7	F: Sandy Clay	NA	NA	NA	NA	NA	NA	<0.001
TP149	0.5-0.6	F: Silty Clay	NA	NA	NA	NA	NA	NA	<0.001
TP153	0-0.1	F: Silty Sandy Clay	NA	NA	NA	NA	NA	NA	<0.001
TP154	0-0.1	F: Gravelly Clayey Sand	NA	NA	NA	NA	NA	NA	<0.001
BH155	0.05-0.2	F: Silty Sand	NA	NA	NA	NA	NA	NA	<0.001
BH155	0.2-0.5	F: Silty Clay	NA	NA	NA	NA	NA	NA	<0.001
TP156	0-0.1	F: Silty Clay	NA	NA	NA	NA	NA	NA	<0.001
TP161	0-0.1	F: Silty Clay	NA	NA	NA	NA	NA	NA	<0.001
BH162	0.04-0.2	F: Silty Clay	NA	NA	NA	NA	NA	NA	<0.001
Total Number of	samples		0	0	0	3	0	0	20
Maximum Value			NA	NA	NA	0.20	NA	NA	<pql< td=""></pql<>

General Solid Waste Restricted Solid Waste Hazardous Waste Concentration above PQL VALUE
VALUE
Bold

																																								Г
	TRH >C16-C34 TRH >C4-C40 Tel >C34-C40 Tel >C34-C40	Toluene	Ethylbenzene	euephx-d+w			Fluorene			Велго(а)апітнаселе			enec-enthre(ri,s)osnediiQ	нсв		Pets- BHC																								2017
	100 100 0.2		~ ~	2 2	\vdash		0.1			0.1			0.1	0.1		0.1																				0.4 1		1 0.1 1 0.1		~ ~
March Marc	 50 210 410 402 403 403 404 405 407 408 409 /ul>	0.5 2.05 2.05	4455	2255			0.1 <0.1 0.075 67%	0.3 0.35		2.1 1.4 1.75			0.3 0.2 0.25	N or		NA nc				-	AN nc				-					-		-			+ + + + + + + + + + + + + + + + + + + +		52 SS 11%			8.5 3.5 3.6
	120 720 240 60.2 60.5 <1 150 830 240 60.2 60.5 <1 135 775 240 nc nc nc 22% 14% 0% nc nc nc	<0.5 <0.5 nc nc	2 4 5 5				<0.1 0.2 0.125 120%			0.2 0.2 0.2 0%			<0.1 <0.1 nc nc	+		NA NA nc					NA NA nc													NA NA nc			61 80 70.5			4 6 5 %
	\$50 100 \$100 \$0.2 \$0.5 \$0.5 \$0.5 \$0.5 \$0.5 \$0.5 \$0.5 \$0.5	40.5 0.5 nc	V V E E				00.1 00.1 00.1	<0.1 0.1 nc nc		0,1 0,1 nc	40.2 40.2 nc		00.1	0,1		00.1 nc					<0.1 <0.1 nc nc													0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	,,,		58 65 615 11%			9.57
	 <50 <100 <100 <100 <00 <0.5 <			2255			00.1 00.1 00.1			0.4 0.5 0.45 22%			00.1	0.0 1.0 0.1		00.1 nc					c0.1 nc													0.0 5 5			150 140 14%	111		0.5
	 <50 <100 			2 2 2 2 2	-		0.1 7 5 5			40.1 60.1 nc	-0.2 nc		00.1 00.1 00.1		++	A A S S		++		++														A A S S	<u></u>		260 460 360 56%		11 16 13.5 37%	0 S S 8
	 <50 <100 <100 <00 <l><00 <00 <00</l>			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			00.1 R 00.1	-0.1 -0.1 nc nc		00.1 00.1 00.1	0.2		00.1 nc	0,1		00.1 nc nc					00.1 nc nc													9 8 8	-		320 290 305 10%			2.5 % %
	 50 230 4100 602 605 /ul>			2 2 2 2 3			60.1	0.1 0.1 0.1		0.2 0.2 0.2 0.8			0.1 0.1			NA nc nc					N A D D													N N S			100 120 110 18%			E 4 5 %
	 <50 <100 <100 <02 <0.5 <	-0.2 -0.2 -c.2		2 2 2 2	+		00.1 00.1 00.1	-0.1 nc nc		9,7	-0.2 -0.2 nc		00.1	0,0		90,1					-0.1 nc nc						1111							6 6 8 8	+		260 225 31% 1	-		9.8
- 1	 <50 < 100 <100 <100 <100 <100 <0.02 <0.05 			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	+		60.1	0.1 0.1 0.1		0.1 0.1 0.1	<0.2 <0.2 nc		0.1 0.1 0.1	+		NA NA nc					NA on													N N S			140 140 0%			9 5 5 %
	 <50 <100 <100 <00 <0,2 <0,5 <0,0 <			2 2 2 2 2			0.1 70 S	CO.1 CO.1		0.1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		00.1 70 or			NA nc					A A D D													N N D	+		74 69 71.5 77.			5 1 0 %
	<50 <100 <100 <0.2 <0.5			2	+++		<0.1	:0:1		00.1			00.1	NA NA	H	NA	H		-		N.														NA c4	40.4	1	2 <0.1	₽	
4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	<50 <100 <100 <0.2 <0.5			2	+	_	<0.1	-0.1	-	<0.1	<0.2		001	NA NA	NA NA	-			N.	++-	×		NA	NA NA						-		-	-	Š	++	40.4	₽	3 <0.1	₽	
Color Colo	<50 <100 <100 <1 <1			Ø ₹	\mathbf{H}		<0.1	-0.1	-	-0.1	-	-	-0.1).1 NA		NA		\square		-	AN											+-		NA A	\mathbf{H}	-	0.07			.02
%98	<50 <100 <100 <1 <1			Δ Q	_		40.1			<0.1			<0.1	3.1 NA	NA NA	NA		AN N	AN NA		AN		NA N	A NA	AN N	-		AN AN	-		NA NA	AN NA	NA NA	NA	-	<0.01 <0.01	0.07	0.03 <0.000	5 <0.02 <0	.02
%66	%98 %98	-		87% 86%	- %98																																			ПП
	%66 %66			%56 %66	5,86												· -]. 					<u>.</u>		<u>.</u>	\blacksquare			- -		- -	1.		- - -		\Box
			1																																					1

PSI Summary Tables

ABBREVIATIONS AND EXPLANATIONS

Abbreviations used in the Tables:

ABC: Ambient Background Concentration PCBs: Polychlorinated Biphenyls

ACM: Asbestos Containing Material PCE: Perchloroethylene (Tetrachloroethylene or Teterachloroethene)

ADWG: AustralianDrinking Water Guidelines

AF: Asbestos Fines

pH _{KCL}: pH of filtered 1:20, 1M KCL extract, shaken overnight pH_{ox}: pH of filtered 1:20 1M KCl after peroxide digestion

ANZG Australian and New Zealand Guidelines PQL: Practical Quantitation Limit

B(a)P: Benzo(a)pyrene **RS:** Rinsate Sample

CEC:Cation Exchange CapacityRSL:Regional Screening LevelsCRC:Cooperative Research CentreRSW:Restricted Solid WasteCT:Contaminant ThresholdSAC:Site Assessment Criteria

Ells: Ecological Investigation Levels SCC: Specific Contaminant Concentration

ESLs:Ecological Screening LevelsS_C:Chromium reducible sulfurFA:Fibrous AsbestosS_{POS}:Peroxide oxidisable SulfurGIL:Groundwater Investigation LevelsSSA:Site Specific Assessment

GSW: General Solid Waste **SSHSLs:** Site Specific Health Screening Levels

HILS: Health Investigation Levels TAA: Total Actual Acidity in 1M KCL extract titrated to pH6.5

HSLs: Health Screening Levels **TB:** Trip Blank

HSL-SSA:Health Screening Level-SiteSpecific Assessment
kg/LTCA:
kilograms per litre1,1,1 Trichloroethane (methyl chloroform)
TCE:TCE:

NA:Not AnalysedTCLP:Toxicity Characteristics Leaching ProcedureNC:Not CalculatedTPA:Total Potential Acidity, 1M KCL peroxide digest

NEPM: National Environmental Protection Measure TS: Trip Spike

NHMRC: National Health and Medical Research Council TRH: Total Recoverable Hydrocarbons

NL: Not Limiting

TSA: Total Sulfide Acidity (TPA-TAA)

NSL: No Set Limit

UCL: Upper Level Confidence Limit on Mean Value

OCP:Organochlorine PesticidesUSEPAUnited States Environmental Protection AgencyOPP:Organophosphorus PesticidesVOCC:Volatile Organic Chlorinated Compounds

PAHs: Polycyclic Aromatic Hydrocarbons WHO: World Health Organisation

%w/w: weight per weight
ppm: Parts per million

Table Specific Explanations:

HIL Tables:

- The chromium results are for Total Chromium which includes Chromium III and VI. For initial screening purposes, we have assumed that the samples contain only Chromium VI unless demonstrated otherwise by additional analysis.
- Carcinogenic PAHs is a toxicity weighted sum of analyte concentrations for a specific list of PAH compounds relative to B(a)P. It is also referred to as the B(a)P Toxic Equivalence Quotient (TEQ).

EIL/ESL Table:

- ABC Values for selected metals have been adopted from the published background concentrations presented in Olszowy et. al., (1995), Trace Element Concentrations in Soils from Rural and Urban New South Wales (the 25th percentile values for old suburbs with low traffic have been quoted).

Waste Classification and TCLP Table:

- Data assessed using the NSW EPA Waste Classification Guidelines, Part 1: Classifying Waste (2014).
- The assessment of Total Moderately Harmful pesticides includes: Dichlorovos, Dimethoate, Fenthion, Fenitrothion, Ethion, Malathion, Methidathion and Parathion Methyl.
- Assessment of Total Scheduled pesticides include: HBC, alpha-BHC, gamma-BHC, beta-BHC, Heptachlor, Aldrin, Heptachlor Epoxide, gamma-Chlordane, alpha-chlordane, pp-DDE, Dieldrin, Endrin, pp-DDD, pp-DDT, Endrin Aldehyde.

QA/QC Table:

- Field blank, Inter and Intra laboratory duplicate results are reported in mg/kg.
- Trip spike results are reported as percentage recovery.
- Field rinsate results are reported in μg/L.

VALUE Bold

Concentration above the SAC Concentration above the PQL

X JKEnvironments

TABLE S.1 SOIL LABORATORY RESULTS COMPARED TO NEPM 2013. HIL-A: 'Residential with garden/accessible soils; children's day care centers; preschools; and primary schools'

						DEALLY METALS	ACTAL C			\mid	YEAR O				SCANOCUI OBINE BESTICIDES (OCE	INE DECTION	VEC (OCD2)		ľ	1. ddol andioinada do		
						TEAV	METALS				-		r	5	SCANOCHEOF.		_		+	OP PESTICIDES (OPPS)	TOTAL BCB.	
All data in mg/kg unless statea otnerwise	ss statea otne.	rwise	Arsenic	Cadmium Chromium	Chromium	Copper	Lead	Mercury	Nickel	Zinc	PAHS	Carcinogenic	E E	Endosultan Methoxychlor Aldrin & Dieldrin	thoxychlor		Chlordane	S, DDE	Heptachlor	Chlorpyritos	IOIAL PCB3	ASBESTOS FIBRES
PQL - Envirolab Services	es		4	0.4	1	1	1	0.1	1	1		0.5	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	100
Site Assessment Criteria (SAC)	ria (SAC)		100	20	100	0009	300	40	400	7400	300	3	10	270	300	9	20	240	9	160	1	Detected/Not Detected
Sample Reference	Sample Depth	Sample Description																				
BH1	0-0.3	Silty Clay	44	<0.4	37	70	7	<0.1	10	77	0.2	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH1 - [LAB_DUP]	0-0.3	Laboratory Duplicate	4>	<0.4	38	70	6	<0.1	10	22	0.55	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
BH1	0.8-1.0	XW Andersite	4>	<0.4	62	130	6	<0.1	14	31	<0.05	<0.5	NA	NA	NA	AM	ΝΑ	NA	NA	NA	Ν	NA
BH2	0-0.2	F: Gravelly Sandy Clay	9	<0.4	38	200	∞	<0.1	11	36	6.9	,	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH2	0.3-0.5	Sandy Silty Clay	9	<0.4	91	280	S.	<0.1	18	37	<0.05	<0.5	NA	A	NA	AA	Ā	AA	NA	NA	Ā	NA
ВН2	0.8-1.0	Silty Clay	9	<0.4	63	200	9	<0.1	13	30	<0.05		NA	NA	NA	AA	Ā	NA	NA	NA	Ā	NA
внз	0-0.1	F: Silty Clay	7	<0.4	23	22	12	<0.1	6	24	0.64		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
внз	0.3-0.5	F: Sandy Silty Clay	œ	<0.4	47	98	15	0.2	11	33	82		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
внз	1.3-1.5	Sandy Silty Clay	4	<0.4	72	120	6	<0.1	12	22	3.3		A N	ΑN	A	Ą	¥	AA	AN	NA	¥	NA
BH4	0-0.1	F: Silty Clay	ıs	<0.4	30	85	78	<0.1	7	23	99.0	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH4 - [LAB_DUP]	0-0.1	Laboratory Duplicate	ın	<0.4	28	80	56	<0.1	9	23	0.5	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
BH4	0.3-0.5	Sandy Silty Clay	7	<0.4	18	300	m	<0.1	11	31	<0.05	<0.5	AA	Ā	AA	AN	Ā	NA	AN	NA	Ā	NA
BH4	0.8-1.0	XW Andersite	9	<0.4	16	210	7	<0.1	6		<0.05	<0.5	AA	NA	NA	AA	Ą	NA	AN	NA	ă	NA
BHS	0-0.1	Silty Clay	6	<0.4	56	230	13	<0.1	6	30	2.9	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BHS	0.8-1.0	Silty Clay	4	<0.4	25	180	7	<0.1	12	20	<0.05	<0.5	AN	AM	AN	AN	Ā	NA	NA	NA	A	NA
ВН6	0-0.1	F: Silty Clay	44	<0.4	77	220	17	<0.1	6		<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
ВН6	0.3-0.5	Sandy Silty Clay	4	<0.4	19	440	m	<0.1	01		<0.05	<0.5	NA	NA	NA	AN	NA	NA	NA	NA	Ą	NA
ВН6	0.8-1.0	XW Andersite	4	<0.4	16	400		<0.1	6		<0.05	<0.5	AA	NA	NA	Ą	Ą	NA	A	NA	ă	NA
BH7	0.02-0.3	F: Gravelly Silty Sand	7	<0.4	36	94	54	<0.1	6		<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH7 - [LAB_DUP]	0.02-0.3	Laboratory Duplicate	9	<0.4	21	100	70	<0.1	11		<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	AN
BH7	0.3-0.5	F: Silty Sand	7	<0.4	99	120	10	9.0	13	59	<0.05	<0.5	NA	NA	NA	AN	NA	NA	NA	NA	AN	NA
вня	0.02-0.2	F: Silty Sand	4	<0.4	13	17	7	<0.1	2	7	77	3.6	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
вня	0.3-0.5	Sandy Silty Clay	44	<0.4	23	170	7	<0.1	15	42	3.3	<0.5	A	NA	NA	AA	NA	AN	NA	NA	Ā	NA
TP13	0-0.1	F: Silty Clay	2	<0.4	20	210	22	0.1	8	29	0.2	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
TP13	9.5-0.6	Silty Clay	7	<0.4	24	490	4	<0.1	11	28	<0.05	<0.5	¥	ΝΑ	NA	Ā	Ą	AA	ΝΑ	NA	¥	NA
TP14	0-0.1	F: Silty Clay	15	<0.4	31	66	120	0.1	ю	88	1.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
TP14	0.4-0.5	Silty Clay	4 >	<0.4	17	420	9	<0.1	10	23	0.5	<0.5	AA	AA	NA	Ą	Ą	ΝA	AN	NA	Ā	NA
TP14	0.9-1.0	XW Andersite	4>	<0.4	10	470	7	<0.1	10	47	<0.05		NA	NA	NA	AN	Ā	ΝΑ	NA	NA	Ā	NA
TP15	0-0.1	F: Silty Clay	9	<0.4	21	34	12	<0.1	7	30	0.3	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
TP15 - [LAB_DUP]	0-0.1	Laboratory Duplicate	2	<0.4	19	59	12	<0.1	7	30	0.2	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
TP15	0.9-1.0	F: Sandy Silty Clay	7	<0.4	24	32	14	<0.1	s	11	43		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
TP15	1.3-1.5	Silty Clay	4>	<0.4	25	110	7	0.7	6	18	<0.05		ΑA	NA	Ν	Ą	¥	ΑN	Ϋ́	ΝΑ	¥	۷N
TP16	0-0.1	Silty Clay	10	<0.4	26	190	22	<0.1	14	61	1.4	+	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
TP16	0.4-0.5	Silty Clay	2	<0.4	74	180	4	<0.1	15	22	<0.05		AA	AA	AA	Ā	Ā	AA	AN	NA	Ā	AN
SDUP1	0-0.1	Duplicate of TP16	9	<0.4	52	190	22	<0.1	14	99	1.7		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
SDUP2	0-0.1	Duplicate of TP15	9	<0.4	70	31	12	<0.1	7	53	0.1		AA	NA	AA	Ā	Ā	AA	AN	NA	Ā	NA
SDUP3	0-0.1	Duplicate of TP14	11	<0.4	77	130	170	<0.1	9	140	98.0	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
SDUP4	0-0.1	Duplicate of TP13	ıo	<0.4	16	160	24	<0.1	7	29	0.3		AN A	AN	NA	NA	NA	NA	NA	NA	Ā	NA
SDUP4 - [LAB_DUP]	0-0.1	Laboratory Duplicate	20	<0.4	15	170	19	<0.1	7	09	Ą		AA	ΝΑ	Y.	Ą	¥	ΑN	ΑN	NA	¥	NA
BH4-FCF1	0-0.2	Fragment	Ą	NA	AN	¥	NA	A	NA	NA	NA	NA	ΑA	NA	NA	ΑN	ΝA	ΝA	ΝA	NA	ΑN	Detected
BH4-FCF2	0-0.2	Fragment	AN	NA	NA	AA	NA	NA	NA	AN	NA		AA A	NA	NA	NA	NA	NA	NA	NA	AN	Detected
Total Number of Samples	mples		39	39	39	33	39	39	39	39	38	38	50	50	50.	50	50	50	50	20	20	16
Maximum Value			15	<pql< td=""><td>AT.</td><td>490</td><td>π/π</td><td>0.7</td><td>18</td><td>140</td><td>es S</td><td></td><td>cPQL</td><td>-PQE</td><td>-γνι γγι</td><td>-12√ -12√</td><td><pul< td=""><td><pul< td=""><td><pul td="" <=""><td>- APUL</td><td>γνα<u>r</u></td><td>Detected</td></pul></td></pul<></td></pul<></td></pql<>	AT.	490	π/π	0.7	18	140	es S		cPQL	-PQE	-γνι γγι	-12√ -12√	<pul< td=""><td><pul< td=""><td><pul td="" <=""><td>- APUL</td><td>γνα<u>r</u></td><td>Detected</td></pul></td></pul<></td></pul<>	<pul< td=""><td><pul td="" <=""><td>- APUL</td><td>γνα<u>r</u></td><td>Detected</td></pul></td></pul<>	<pul td="" <=""><td>- APUL</td><td>γνα<u>r</u></td><td>Detected</td></pul>	- APUL	γνα <u>r</u>	Detected
_																						

SOIL LABORATORY RESULTS COMPARED TO HSLs All data in mg/kg unless stated otherwise

					C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene	Field PID Measuremen
PQL - Envirolab Servi	ces				25	50	0.2	0.5	1	1	1	ppm
NEPM 2013 HSL Land	d Use Catego	ry				-	HSL-A/B: LO	OW/HIGH DENSITY	RESIDENTIAL		•	
Sample Reference	Sample Depth	Sample Description	Depth Category	Soil Category								
BH1	0-0.3	Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.5
BH1 - [LAB DUP]	0-0.3	Laboratory Duplicate	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	NA
BH1	0.8-1.0	XW Andersite	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.3
BH2	0-0.2	F: Gravelly Sandy Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	1.3
BH2	0.3-0.5	Sandy Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	1.9
BH2	0.8-1.0	Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	1.8
BH3	0-0.1	F: Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.6
BH3	0.3-0.5	F: Sandy Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	2	0.7
BH3	1.3-1.5	Sandy Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	1.5
BH4	0-0.1	F: Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	2.2
BH4 - [LAB DUP]	0-0.1	Laboratory Duplicate	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	NA.
BH4	0.3-0.5	Sandy Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	2
BH4	0.8-1.0	XW Andersite	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	3.8
BH5	0-0.1	Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.6
BH5	0.8-1.0	Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.6
BH6	0-0.1	F: Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.4
BH6	0.3-0.5	Sandy Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.1
BH6	0.8-1.0	XW Andersite	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.1
BH7	0.02-0.3	F: Gravelly Silty Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.8
BH7 - [LAB DUP]	0.02-0.3	Laboratory Duplicate	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	NA
BH7	0.3-0.5	F: Silty Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	2
BH8	0.02-0.2	F: Silty Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH8	0.3-0.5	Sandy Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.3
TP13	0-0.1	F: Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.6
TP13	0.5-0.6	Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	1.3
TP14	0-0.1	F: Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	1.5
TP14	0.4-0.5	Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.5
TP14	0.9-1.0	XW Andersite	Om to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	1.1
TP15	0-0.1	F: Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.3
TP15 - [LAB DUP]	0-0.1	Laboratory Duplicate	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	NA.
TP15	0.9-1.0	F: Sandy Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.4
TP15	1.3-1.5	Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.5
TP16	0-0.1	Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.2
TP16	0.4-0.5	Silty Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	1.2
SDUP1	0-0.1	Duplicate of TP16	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	NA
SDUP2	0-0.1	Duplicate of TP15	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	NA NA
SDUP3	0-0.1	Duplicate of TP14	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	NA NA
SDUP4	0-0.1	Duplicate of TP13	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	NA NA
Total Number of Sa	mples				38	38	38	38	38	38	38	30
Maximum Value					<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>2</td><td>3.8</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>2</td><td>3.8</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>2</td><td>3.8</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>2</td><td>3.8</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>2</td><td>3.8</td></pql<></td></pql<>	<pql< td=""><td>2</td><td>3.8</td></pql<>	2	3.8

Concentration above the SAC Concentration above the PQL VALUE Bold

The guideline corresponding to the concentration above the SAC is highlighted in grey in the Site Assessment Criteria Table below

HSL SOIL ASSESSMENT CRITERIA

Sample Reference	Sample Depth	Sample Description	Depth Category	Soil Category	C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene
BH1	0-0.3	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH1 - [LAB_DUP]	0-0.3	Laboratory Duplicate	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH1	0.8-1.0	XW Andersite	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH2	0-0.2	F: Gravelly Sandy Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH2	0.3-0.5	Sandy Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH2	0.8-1.0	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH3	0-0.1	F: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH3	0.3-0.5	F: Sandy Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH3	1.3-1.5	Sandy Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH4	0-0.1	F: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH4 - [LAB_DUP]	0-0.1	Laboratory Duplicate	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH4	0.3-0.5	Sandy Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH4	0.8-1.0	XW Andersite	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH5	0-0.1	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH5	0.8-1.0	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH6	0-0.1	F: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH6	0.3-0.5	Sandy Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH6	0.8-1.0	XW Andersite	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH7	0.02-0.3	F: Gravelly Silty Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH7 - [LAB_DUP]	0.02-0.3	Laboratory Duplicate	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH7	0.3-0.5	F: Silty Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH8	0.02-0.2	F: Silty Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH8	0.3-0.5	Sandy Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP13	0-0.1	F: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP13	0.5-0.6	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP14	0-0.1	F: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP14	0.4-0.5	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP14	0.9-1.0	XW Andersite	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP15	0-0.1	F: Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP15 - [LAB_DUP]	0-0.1	Laboratory Duplicate	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP15	0.9-1.0	F: Sandy Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP15	1.3-1.5	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP16	0-0.1	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
TP16	0.4-0.5	Silty Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
SDUP1	0-0.1	Duplicate of TP16	0m to <1m	Sand	45	110	0.5	160	55	40	3
SDUP2	0-0.1	Duplicate of TP15	0m to <1m	Sand	45	110	0.5	160	55	40	3
SDUP3	0-0.1	Duplicate of TP14	0m to <1m	Sand	45	110	0.5	160	55	40	3
SDUP4	0-0.1	Duplicate of TP13	0m to <1m	Sand	45	110	0.5	160	55	40	3

TABLE S3
SOIL LABORATORY RESULTS COMPARED TO MANAGEMENT LIMITS
All data in mg/kg unless stated otherwise

		·	C ₆ -C ₁₀ (F1) plus	>C ₁₀ -C ₁₆ (F2) plus	>C ₁₆ -C ₃₄ (F3)	>C ₃₄ -C ₄₀ (F4)
			BTEX	napthalene		
QL - Envirolab Serv			25	50	100	100
NEPM 2013 Land Us			RE:	SIDENTIAL, PARKLAND	& PUBLIC OPEN SP	ACE
Sample Reference		Soil Texture				
BH1	0-0.3	Coarse	<25	<50	<100	<100
BH1 - [LAB_DUP]	0-0.3	Coarse	<25	<50	<100	<100
BH1	0.8-1.0	Coarse	<25	<50	<100	<100
BH2	0-0.2	Coarse	<25	<50	<100	<100
BH2	0.3-0.5	Coarse	<25	<50	<100	<100
BH2	0.8-1.0	Coarse	<25	<50	<100	<100
BH3	0-0.1	Coarse	<25	<50	130	230
BH3	0.3-0.5	Coarse	<25	<50	320	120
BH3	1.3-1.5	Coarse	<25	<50	<100	<100
BH4	0-0.1	Coarse	<25	<50	<100	<100
BH4 - [LAB_DUP]	0-0.1	Coarse	<25	<50	<100	<100
BH4	0.3-0.5	Coarse	<25	<50	<100	<100
BH4	0.8-1.0	Coarse	<25	<50	<100	<100
BH5	0-0.1	Coarse	<25	<50	<100	<100
BH5	0.8-1.0	Coarse	<25	<50	<100	<100
BH6	0-0.1	Coarse	<25	<50	<100	<100
BH6	0.3-0.5	Coarse	<25	<50	<100	<100
BH6	0.8-1.0	Coarse	<25	<50	<100	<100
BH7	0.02-0.3	Coarse	<25	<50	<100	<100
BH7 - [LAB_DUP]	0.02-0.3	Coarse	<25	<50	<100	<100
BH7	0.3-0.5	Coarse	<25	<50	<100	<100
BH8	0.02-0.2	Coarse	<25	<50	<100	<100
BH8	0.3-0.5	Coarse	<25	<50	<100	<100
TP13	0-0.1	Coarse	<25	<50	<100	<100
TP13	0.5-0.6	Coarse	<25	<50	<100	<100
TP14	0-0.1	Coarse	<25	<50	<100	<100
TP14	0.4-0.5	Coarse	<25	<50	<100	<100
TP14	0.9-1.0	Coarse	<25	<50	<100	<100
TP15	0-0.1	Coarse	<25	<50	<100	<100
TP15 - [LAB_DUP]	0-0.1	Coarse	<25	<50	<100	<100
TP15 TP15	0.9-1.0 1.3-1.5	Coarse Coarse	<25 <25	<50 <50	<100 <100	<100 <100
TP15	0-0.1	Coarse	<25 <25	<50 <50	<100	<100
TP16	0.4-0.5	Coarse	<25	<50 <50	<100	<100
SDUP1	0.4-0.5	Coarse	<25 <25	<50 <50	<100	<100
SDUP1 SDUP2	0-0.1	Coarse	<25 <25	<50 <50	<100	<100
SDUP3	0-0.1	Coarse	<25	<50	<100	<100
SDUP4	0-0.1	Coarse	<25	<50	<100	<100
350F4	0-0.1	coarse	\23	\J0	×100	<100
Total Number of Sa	mples		38	38	38	38
Maximum Value	p.cs		<pql< td=""><td><pql< td=""><td>320</td><td>230</td></pql<></td></pql<>	<pql< td=""><td>320</td><td>230</td></pql<>	320	230
				<pql< td=""><td>320</td><td>230</td></pql<>	320	230
Concentration abov	e the SAC		VALUE			

MANAGEMENT LIMIT ASSESSMENT CRITERIA

Sample Reference	Sample Depth	Soil Texture	C ₆ -C ₁₀ (F1) plus	>C ₁₀ -C ₁₆ (F2) plus	>C ₁₆ -C ₃₄ (F3)	>C ₃₄ -C ₄₀ (F4)
			BTEX	napthalene		34 40 (* 7
BH1	0-0.3	Coarse	700	1000	2500	10000
BH1 - [LAB_DUP]	0-0.3	Coarse	700	1000	2500	10000
BH1	0.8-1.0	Coarse	700	1000	2500	10000
BH2	0-0.2	Coarse	700	1000	2500	10000
BH2	0.3-0.5	Coarse	700	1000	2500	10000
BH2	0.8-1.0	Coarse	700	1000	2500	10000
BH3	0-0.1	Coarse	700	1000	2500	10000
BH3	0.3-0.5	Coarse	700	1000	2500	10000
BH3	1.3-1.5	Coarse	700	1000	2500	10000
BH4	0-0.1	Coarse	700	1000	2500	10000
BH4 - [LAB_DUP]	0-0.1	Coarse	700	1000	2500	10000
BH4	0.3-0.5	Coarse	700	1000	2500	10000
BH4	0.8-1.0	Coarse	700	1000	2500	10000
BH5	0-0.1	Coarse	700	1000	2500	10000
BH5	0.8-1.0	Coarse	700	1000	2500	10000
BH6	0-0.1	Coarse	700	1000	2500	10000
BH6	0.3-0.5	Coarse	700	1000	2500	10000
BH6	0.8-1.0	Coarse	700	1000	2500	10000
BH7	0.02-0.3	Coarse	700	1000	2500	10000
BH7 - [LAB_DUP]	0.02-0.3	Coarse	700	1000	2500	10000
BH7	0.3-0.5	Coarse	700	1000	2500	10000
BH8	0.02-0.2	Coarse	700	1000	2500	10000
BH8	0.3-0.5	Coarse	700	1000	2500	10000
TP13	0-0.1	Coarse	700	1000	2500	10000
TP13	0.5-0.6	Coarse	700	1000	2500	10000
TP14	0-0.1	Coarse	700	1000	2500	10000
TP14	0.4-0.5	Coarse	700	1000	2500	10000
TP14	0.9-1.0	Coarse	700	1000	2500	10000
TP15	0-0.1	Coarse	700	1000	2500	10000
TP15 - [LAB_DUP]	0-0.1	Coarse	700	1000	2500	10000
TP15	0.9-1.0	Coarse	700	1000	2500	10000
TP15	1.3-1.5	Coarse	700	1000	2500	10000
TP16	0-0.1	Coarse	700	1000	2500	10000
TP16	0.4-0.5	Coarse	700	1000	2500	10000
SDUP1	0-0.1	Coarse	700	1000	2500	10000
SDUP2	0-0.1	Coarse	700	1000	2500	10000
SDUP3	0-0.1	Coarse	700	1000	2500	10000
SDUP4	0-0.1	Coarse	700	1000	2500	10000

TABLE S4
SOIL LABORATORY RESULTS COMPARED TO DIRECT CONTACT CRITERIA
All data in mg/kg unless stated otherwise

Analyte		C ₆ -C ₁₀	>C ₁₀ -C ₁₆	>C ₁₆ -C ₃₄	>C ₃₄ -C ₄₀	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene	PID
PQL - Envirolab Services		25	50	100	100	0.2	0.5	1	1	1	
CRC 2011 -Direct contac	t Criteria	4,400	3,300	4,500	6,300	100	14,000	4,500	12,000	1,400	
Site Use				RESIDE	NTIAL WITH AC	CESSIBLE SOIL-	DIRECT SOIL C	ONTACT			
Sample Reference	Sample Depth										
BH1	0-0.3	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.5
BH1 - [LAB_DUP]	0-0.3	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	NA
BH1	0.8-1.0	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.3
BH2	0-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	1.3
BH2	0.3-0.5	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	1.9
BH2	0.8-1.0	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	1.8
BH3	0-0.1	<25	<50	130	230	<0.2	<0.5	<1	<1	<1	0.6
BH3	0.3-0.5	<25	<50	320	120	<0.2	<0.5	<1	<1	2	0.7
BH3	1.3-1.5	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	1.5
BH4	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	2.2
BH4 - [LAB DUP]	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	NA
BH4	0.3-0.5	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	2
BH4	0.8-1.0	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	3.8
BH5	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.6
BH5	0.8-1.0	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.6
BH6	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.4
BH6	0.3-0.5	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.1
BH6	0.8-1.0	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.1
BH7	0.02-0.3	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.8
BH7 - [LAB DUP]	0.02-0.3	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	NA
BH7	0.3-0.5	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	2
BH8	0.02-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH8	0.3-0.5	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.3
TP13	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.6
TP13	0.5-0.6	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	1.3
TP14	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	1
TP14	0.4-0.5	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.5
TP14	0.9-1.0	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	1.1
TP15	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.3
TP15 - [LAB_DUP]	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	NA
TP15	0.9-1.0	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.4
TP15	1.3-1.5	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.5
TP16	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.2
TP16	0.4-0.5	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	1.2
SDUP1	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	NA
SDUP2	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	NA
SDUP3	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	NA
SDUP4	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	NA
3501 4	0-0.1	`~~	130	100	100	10.2	10.5	-,1	``	``	11/1
otal Number of Sampl	es	38	38	38	38	38	38	38	38	38	30
Aaximum Value		<pql< td=""><td><pql< td=""><td>320</td><td>230</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>2</td><td>3.8</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td>320</td><td>230</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>2</td><td>3.8</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	320	230	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>2</td><td>3.8</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>2</td><td>3.8</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>2</td><td>3.8</td></pql<></td></pql<>	<pql< td=""><td>2</td><td>3.8</td></pql<>	2	3.8

Concentration above the SAC Concentration above the PQL

VALUE Bold

Preliminary (Stage 1) Site Investigation Temora Hospital, 169-189 Loftus Street, Temora, NSW E35822PR

Estimation %(w/w) <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.001 <0.001 <0.001 <0.001 FA and AF ACM F. Symm Estimation Estimation %(w/w) <0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 1 ACM F >7mm E Estimation (g) No visible asbestos detected Asbestos ID in soil <0.1g/kg No visible asbestos detected <0.1 No visible asbestos detected No visible asbestos detected Total Asbestos (g/kg) <0.1 <0.1 ¢0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.1 <0.1 <0.1 No asbestos detected Trace Analysis No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected at reporting limit of 0.1g/kg. Organic fibres detected No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected Asbestos ID in soil (AS4964) >0.1g/kg Sample Mass (g) Sample Depth 0.02-0.3 0.02-0.2 0.9-1.0 0.3-0.5 0.01 0.0.1 0.01 0-0.3 0.01 0.0.1 0.01 0.01 0.01 0.0.2 Sample refeference BH3 BH8 TP13 TP14 TP15 TP15 TP16 BH BHZ BH3 ₽4 BHS BHB ВН7 Lab Report Number Mass from FA in Soil in FA (8) (%w/w) ı No FA observed Mass FA (g) Mass [Asbestos Asbestos in from ACM ACM <7mm <7mm in (g) soil (%w/w) No ACM <7mm observed Mass ACM <7mm (g) FIELD DATA

Mass [Asbestos
Asbestos from ACM
in ACM in soil]
(g) (%w/w) TABLE 55
ARREST STATES CATION - FIELD OBSERVATIONS AND LABORATORY RESULTS
HSI-A: Realential with garden/accessible soils; children's day care centers; precchools; and primary schools 6/90.0 0.01 7.2495 1 1 ı No ACM observed Mass ACM (g) 48.3 Approx. Volume Soil of Soil Mass (g) 10,440 10,220 10,290 12,490 10,180 2,240 8,960 10,670 1,880 10,520 12,310 10,340 1 10 10 7 00 10 ı 10 1.7 10 9 9 10 10 9 Visible ACM in top 100mm Yes VALUE 2 S ŝ Ä Ą 9 Ā ŝ Ą Ā ă Š 0.3-1.1 0.02-0.3 0.1-0.5 Sample Depth 0.1-0.3 0-0.2 0-0.1 0.0.2 0-0.2 0-0.1 0-0.2 0-0.1 1 oncentration above the SAC Sample reference TP13 TP13 TP14 TP15 TP15 BH3 ВНЕ BH7 TP15 BHZ ВНЗ BH3 BH4 ate Sampled 4/05/2023 3/05/2023 4/05/2023 4/05/2023 2/05/2023 2/05/2023 4/05/2023 4/05/2023 4/05/2023 4/05/2023 4/05/2023 4/05/2023 4/05/2023 SAC

Preliminary (Stage 1) Site Investigation Temora Hospital, 169-189 Laftus Street, Temora, NSW E35822PR

V JKEnvironments

	TABLE S6	SOIL LABORATORY RESULTS COMPARED TO NEPM 2013 EILS AND ESIS

					_			AGED HEAVY METALS-EILS	METALS-EILS			SILS	s					ESLs				
			Ŧ.	CEC C (cmolc/kg)	Clay Content (% clay)	Arsenic	Chromium	Copper	Lead	Nickel	Zinc	Naphthalene	TOO	C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	>C ₁₆ -C ₂₄ (F3)	>C ₃₄ -C ₄₀ (F4)	Benzene	Toluene	Ethylbenzene	. Total Xylenes	ũ
AQL - Envirolab Services				1		4	1	1	1	1	1	1	0.1	25	20	100	100	0.2	0.5	1	1	Т
mbient Background Concentration (ABC)	(ABC)					NSL	8	18	104	25	22	TSN	NSF	TSN	NSF	NSF	NST	NSF	NSI	TSN	NSF	Н
Sample Reference Depth	Sample Description	Soil Texture																				
BH1 0-0.3	Sifty Clay	Fine	NA	NA	NA	42	37	20	7	10	22	7	<0.1	<25	€00	<100	<100	<0.2	<0.5	17	₽	t
BH1 - [LAB_DUP] 0-0.3	Laboratory Duplicate	Fine	NA	NA	NA	4	38	20	6	10	52	₽	<0.1	425	99	<100	<100	<0.2	<0.5	₹	₽	Т
		Fine	NA	NA	NA	4	29	130	6	14	31	7	NA	<25	\$	<100	<100	<0.2	<0.5	7	∀	Т
	F: Gravelly Sandy Clay	Fine	NA	NA	NA	9	38	200	80	11	36	1>	<0.1	<25	Q\$0	<100	<100	<0.2	<0.5	17	D	П
BH2 0.3-0.5	S	Fine	NA	NA	NA	9	91	280	s	18	37	Ţ	ΝA	<25	≪20	<100	<100	<0.2	<0.5	7	⊽	П
		Fine	NA	NA	NA	9	83	200	9	13	30	7	NA	<25	99	<100	<100	<0.2	<0.5	7	٧	П
		Fine	NA	NA	NA	7	23	22	12	6	24	77	<0.1	<25	0\$>	130	230	<0.2	<0.5	7	∀	Т
BH3 0.3-0.5	F: Sandy Silty Clay	Fine	ΝA	NA	NA	00	47	98	15	=	33	2	<0.1	572	\$	320	120	<0.2	<0.5	7	⊽	Т
BH3 1.3-1.5		Fine	NA	NA	NA	4	72	120	6	12	22	Ü	ĄN	<25	9	<100	<100	<0.2	<0.5	V	₽	Г
BH4 0-0.1	F: Silty Clay	Fine	NA	NA	NA	s	30	82	58	7	23	Ų	<0.1	425	900	<100	<100	<0.2	<0.5	U	⊽	Т
BH4 - [LAB_DUP] 0-0.1	E	Fine	NA	NA	NA	ın	28	80	56	9	53	7	<0.1	<25	≪20	<100	<100	<0.2	<0.5	7	⊽	Т
BH4 0.3-0.5		Fine	NA	ΑN	NA	7	18	300	8	11	31	7	NA	<25	-\$0 -\$0	<100	<100	<0.2	<0.5	7	⊽	Г
BH4 0.8-1.0	XW Andersite	Coarse	NA	NA	NA	9	16	210	2	6	24	٥	NA	<25	\$	<100	<100	<0.2	<0.5	7	⊽	Г
		Fine	NA	NA	NA	6	56	230	13	6	30	Ţ	<0.1	<25	\$0	<100	<100	<0.2	<0.5	7	∀	Т
		Fine	NA	ΝΑ	NA	4	25	180	7	12	20	7	NA	<25	≪20	<100	<100	<0.2	<0.5	7	⊽	Т
BH6 0-0.1	F: Sifty Clay	Fine	NA	ΑN	NA	4	22	220	17	6	54	17	<0.1	<25	<\$0	<100	<100	<0.2	<0.5	7	⊽	П
		Fine	NA	NA	NA	<4	19	440	3	10	51	17	NA	<25	\$	<100	<100	<0.2	<0.5	7	₽	Т
BH6 0.8-1.0	XW Andersite	Fine	NA	NA	NA	4	16	400		6	22	1>	NA	<25	\$	<100	<100	<0.2	<0.5	7	⊽	Г
	F: Gravelly Silty Sand	Coarse	NA	NA	NA	7	36	94	24	6	36	₽	<0.1	<25	≪20	<100	<100	<0.2	<0.5	₹	⊽	П
[Jung]	Laboratory Duplicate	Coarse	NA	NA	NA	9	51	100	20	11	34	U	40.1	<25	99	<100	<100	<0.2	<0.5	7	7	П
	F: Silty Sand	Coarse	NA	NA	NA	7	99	120	10	13	59	17	NA	<25	€0	<100	<100	<0.2	<0.5	17	₽	
		Coarse	NA	NA	NA	4	13	12	7	2	7	₽	<0.1	<25	€0	<100	<100	<0.2	<0.5	₽	⊽	ī
BH8 0.3-0.5	Sandy Silty Clay	Fine	NA	NA	NA	8	S	170	7	15	42	Ţ	NA	<25	-20 -20	<100	<100	<0.2	<0.5	ō	∀	П
		Fine	NA	NA	NA	s	20	210	77	80	29	U	40.1	425	90	<100	<100	<0.2	<0.5	7	∀	П
		Fine	NA	NA	NA	7	24	490	4	11	28	1	NA	<25	€00	<100	<100	<0.2	<0.5	Ţ	₽	
TP14 0-0.1		Fine	NA	ΑĀ	NA	15	31	66	120	e	88	₹	€0.1	25	\$0	<100	<100	<0.2	<0.5	₽	⊽	T
		Fine	NA.	A.	NA	ę.	17	420	و	10	22	ď	VA.	425	90	<100	<100	40.2	<0.5	7	∀	T
	1	Coarse	NA.	NA	NA	44	10	470	2	10	47	7	NA	425	90	V100	<100	40.2	<0.5	Ţ	⊽	T
		Fine	ν. V	NA	NA	9	27	34	12	7	30	₹	<0.1	55	30	√100 √100	<100	<0.2	<0.5	₹	⊽	T
DUP	-	Fine	Ā	NA	NA	s	19	53	17	7	90	₹	<0.1	<25	\$0	<100	<100	<0.2	<0.5	₹	⊽	T
	E.S.	Fine	NA	NA	NA	7	24	32	14	5	=	₹	<0.1	425	8	<100	<100	<0.2	<0.5	7	⊽	j
		Fine	NA	NA	NA	\$	25	110	7	6	18	V	NA	425	90	4100 4100	<100	40.2	<0.5	₹	₹	T
		Fine	Ā	AA	NA	10	99	190	52	4	61	₹	<0.1	425	\$0	√100	<100	<0.2	<0.5	₹	⊽	T
		Fine	ΑĀ	NA	NA	s	74	180	4	15	22	∀	Ä	<25	\$	<100	<100	<0.2	<0.5	₹	∀	j
SDUP1 0-0.1	Duplicate of TP16	Fine	NA	NA	NA	10	55	190	52	14	99	17	<0.1	<25	\$	<100	<100	<0.2	<0.5	41	₽	T
	Duplicate of TP15	Fine	NA	NA	NA	9	20	31	12	7	53	7	NA	<25	€0	<100	<100	<0.2	<0.5	₹	₹	П
	Duplicate of TP14	Fine	NA	ΑA	NA	=	22	130	170	9	140	∀	<0.1	55	\$0	<100	<100	<0.2	<0.5	₹	⊽	7
SDUP4 0-0.1	Duplicate of TP13	Fine	NA	NA	NA	s	16	160	24	7	- 67	7	NA	<25	\$0	√100 √100	<100	<0.2	<0.5	7	∀	7
SDUP4 - [LAB_DUP] 0-0.1	Laboratory Duplicate	Fine	NA	NA	NA	s	15	170	19	7	09	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	T
Cotal Mumber of Samples			0	c	c	30	30	30	30	30	30	38	00	38	38	800	25	38	38	95	99	Ť
oral manifes of samples				> :	• :	6	6 6	600	66	6 9	66	8 4	07	9 9	8 9	900	900	9 9	000	8 8	0 00	Ť
faximum Value			NA	NA	NA	15	16	480	1/0	18	140	7	<pql< td=""><td><pql< td=""><td><pql< td=""><td>320</td><td>230</td><td><pql< td=""><td><pql< td=""><td>, PQI</td><td>200</td><td>1</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>320</td><td>230</td><td><pql< td=""><td><pql< td=""><td>, PQI</td><td>200</td><td>1</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td>320</td><td>230</td><td><pql< td=""><td><pql< td=""><td>, PQI</td><td>200</td><td>1</td></pql<></td></pql<></td></pql<>	320	230	<pql< td=""><td><pql< td=""><td>, PQI</td><td>200</td><td>1</td></pql<></td></pql<>	<pql< td=""><td>, PQI</td><td>200</td><td>1</td></pql<>	, PQI	200	1

tion above the SAC	VALUE
tion above the PQL	Bold
A CONTRACTOR OF THE PARTY OF TH	the County of the little of th

1
8
₹.
9
=
₩

	B(a)P	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	50	20	20	20	20	20	20	20	20	20	50	20	50	
	Total Xylenes	45	45	45	45	45	45	45	45	45	45	45	45	105	45	45	45	45	45	105	105	105	105	45	45	45	45	45	105	45	45	45	45	45	45	45	45	45	45	
	Ethylbenzene	125	125	125	125	125	125	125	125	125	125	125	125	07	125	125	125	125	125	0/	0/	0/	0/	125	125	125	125	125	70	125	125	125	125	125	125	125	125	125	125	
	Toluene	105	105	105	105	105	105	105	105	105	105	105	105	88	105	105	105	105	105	85	82	82	82	105	105	105	105	105	92	105	105	105	105	105	105	105	105	105	105	
	Benzene	99	9	65	65	99	65	65	9	69	99	9	99	95	99	9	99	9	9	20	20	20	20	9	65	65	65	65	20	99	9	9	65	65	65	9	65	65	65	
	>C14 · C40 (F4)	2600	9095	2600	2600	2600	2600	2600	2600	2600	9600	9600	9600	2800	2600	2600	9600	9600	2600	2800	2800	2800	2800	9600	9095	2600	2600	2600	2800	2600	2600	2600	2600	2600	2600	9500	0095	9600	9095	-
	×C ₁₀ -C ₃₄ (F3)	1300	1300	1300	1300	1300	1300	1300	1300	1300	1300	1300	1300	300	1300	1300	1300	1300	1300	300	300	300	300	1300	1300	1300	1300	1300	300	1300	1300	1300	1300	1300	1300	1300	1300	1300	1300	
	>C ₁₀ -C ₁₆ (F2)	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	
	C ₂ -C ₂₀ (F1) >	180	180	180	180	180	180	180	180	180	180	180	180	180	180	180	180	180	180	180	180	180	180	180	180	180	180	180	180	180	180	180	180	180	180	180	180	180	180	
	DOT 0	180	180	:	180	,	1	180	180	,	180	180	ı		180	,	180	;		180	180		180	;	180		180			180	180	180		180		180		180		
	Naphthalene	170	170	170	170	170	170	170	170	170	170	170	170	170	170	170	170	170	170	170	170	170	170	170	170	170	170	170	170	170	170	170	170	170	170	170	170	170	170	
	Zinc	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150
	Nickel	35	35	35	35	35	35	35	32	35	32	32	35	35	35	32	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	32	35	35	35	35	35	35	30
IENT CRITERIA	pead	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	0000
EIL AND ESL ASSESSMENT CRITERIA	Copper	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	00
EILA	Chromium C	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	000
	Arsenic Chr																																					100		
	Clay Content A (% clay)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	***
	CEC Cla	NA	NA	NA	NA	AN	NA	NA	NA	NA	NA	NA	NA	NA	ΝΑ	NA	ΝV	NA	NA	ΝΑ	AN	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	***
	Hd	NA	NA	NA	NA	NA	ΝΑ	NA	NA	NA	NA	NA	ΝΑ	ΝΑ	NA	NA	VN	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	***
	Soil Texture	Fine	Fine	Fine	Fine	Fine	Fine	Fine	Fine	Fine	Fine	Fine	Fine	Coarse	Fine	Fine	Fine	Fine	Fine	Coarse	Coarse	Coarse	Coarse	Fine	Fine	Fine	Fine	Fine	Coarse	Fine	Fine	Fine	Fine	Fine	Fine	Fine	Fine	Fine	Fine	-
	Sample Description S	Silty Clay	Laboratory Duplicate	XW Andersite	F: Gravelly Sandy Clay	Sandy Sifty Clay	Silty Clay	F: Silty Clay	F: Sandy Silty Clay	Sandy Sifty Clay	F: Silty Clay	Laboratory Duplicate	Sandy Silty Clay	XW Andersite	Silty Clay	Silty Clay	F: Silty Clay	Sandy Silty Clay	XW Andersite	F: Gravelly Silty Sand	Laboratory Duplicate	F: Silty Sand	F: Silty Sand	Sandy Silty Clay	F: Silty Clay	Silty Clay	F: Silty Clay	Silty Clay	XW Andersite	F: Silty Clay	Laboratory Duplicate	F: Sandy Silty Clay	Silty Clay	Silty Clay	Silty Clay	Duplicate of TP16	Duplicate of TP15	Duplicate of TP14	Duplicate of TP13	Action to the second
	Sample Depth	0-0.3	0-0.3	0.8-1.0	0-0.2	0.3-0.5	0.8-1.0	0-0.1	0.3-0.5	1.3-1.5	0-0.1	0.0.1	0.3-0.5	0.8-1.0	0-0.1	0.8-1.0	0-0.1	0.3-0.5	0.8-1.0	0.02-0.3	0.02-0.3	0.3-0.5	0.02-0.2	0.3-0.5	0-0.1	9.0-5.0	0-0.1	0.4-0.5	0.9-1.0	0-0.1	0-0.1	0.9-1.0	1.3-1.5	0-0.1	0.4-0.5	0-0.1	0-0.1	0-0.1	0-0.1	.00
	Sample Reference	BHI	BH1 - [LAB_DUP]	BH1	BH2	BH2	BH2	BH3	BH3	BH3	BH4	BH4 - [LAB_DUP]	BH4	BH4	BHS	BHS	BH6	BH6	ВНЕ	8H7	BH7 - [LAB_DUP]	BH7	BH8	BH8	TP13	TP13	TP14	TP14	TP14	TP15	TP15 - [LAB_DUP]	TP15	TP15	TP16	TP16	SDUP1	SDUP2	SDUP3	SDUP4	10100 0410 00100

TABLE S7
SOIL LABORATORY RESULTS COMPARED TO WASTE CLASSIFICATION GUIDELINES
All data in mg/kg unless stated otherwise

Preliminary (Stage 1) Site Investigation Temora Hospital, 169-189 Loftus Street, Temora, NSW E3S822PR

	Envirolab Services al Solid Waste CT1 al Solid Waste CT2 cted Solid Waste SCC2 cted Solid Waste SCC2 (LAB_DUP) [LAB_DUP]		Arsenic		Chromina																,						
Column C	Envirolab Services Tal Solid Waste CT1 Tal Solid Waste CT2 Teted Solid Waste CC2 Teted S				5		Lead	Mercury	Nickel	Zinc				loropyrifos To	otal Moderately Harmful	Total Scheduled	PCBs	ڻ-ڻ گ	C10-C24	C _{1S} -C ₂₈	% -82						ASBESTOS FIBRES
The control of the co	ol Solid Waste CT1 cted Solid Waste SCC2 cted Solid Waste SCC2 mple Reference [LAB_DUP]		4	0.4	1	1	1	0.1	1	1		0.05	0.1	0.1	0.1	0.1	0.1	25	20	100	100	20	0.2	0.5	1	1	100
Mathematical Part Math	al Solid Waste SCC1 cted Solid Waste CC2 mple Reference [LAB_DUP]		100	20	100	NSI	100	4	40	NSI	200	8.0	09	4	250	20	50	920		NSL		10,000	10		Н	000	
Section Sect	cted Solid Waste CT2 cted Solid Waste SCC2 mple Reference [LAB_DUP]		200	100	1900	NSL	1500	20	1050	NSL	200	10	108	7.5	250	20	20	920		NSL		10,000				300	
Part	cted Solid Waste SCC2 mple Reference [LAB_DUP]		400	80	400	NSL	400	16	160	NSL	800	3.2	240	16	1000	20	20	2600		NSL		40,000				000	
1 1 1 1 1 1 1 1 1 1	mple Reference [LAB_DUP] [LAB_DUP]		2000	400	7600	NSL	0009	200	4200	NSL	800	23	432	30	1000	20	20	2600		NSL		40,000			\dashv	200	
Maintain	[WA_DUP]																										
1 1 1 1 1 1 1 1 1 1	[LAB_DUP]	1.3 Silty Clay	*	<0.4	37	70	7	<0.1	10	22	H	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5			Not Detected
Color Colo	[(AB_DUP]		45	<0.4	38	70	6	<0.1	10	52		0.1	<0.1	<0.1	<0.1	<0.1	40.1	<25	<50	<100	<100	<50	<0.2	<0.5		_	NA
1. 1. 1. 1. 1. 1. 1. 1.	[tAB_DUP]		\$	<0.4	62	130	6	<0.1	14	31		<0.05	NA	NA	NA	AN	NA	<25	<50	<100	<100	<50	<0.2	<0.5			NA
Color Colo	[LAB_DUP]		9	<0.4	88	200	∞	<0.1	11	36		69.0	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5		_	Not Detected
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	[LAB_DUP]	+	9	6.0	៩	280	ı,	0.1	8 9	37	+	<0.05	Ψ.	A :	NA .	¥ :	A :	5 5	05 £	√100 √100	400	050	<0.2 0.3	5.0.5	+	U 1	Y S
1. 1. 1. 1. 1. 1. 1. 1.	[LAB_DUP]	-	م 0	4. 6	2 2	9 0	2 0	9 6	<u>n</u>	S 20	+	0.05	Z 6	AN C	AN C	ž ć	AN C	9 6	00 00	700	180	9 6	20.5	5.05	+	7 5	Not Detected
	[LAB_DUP]	+	- 00	4.05	47	88	4 12	0.2	, 11	t 22	ł	5.4	0.1	20.1	5 6	0 0	0.1	55	8 8	170	200	370	<0.2	0.5	+	7 17	Not Detected
Part	[LAB_DUP]	H	4	<0.4	72	120	6	<0.1	12	77	۱	0.2	ΑN	NA	AN	ΑN	NA	\$2	\$20	<100	<100	\$20	<0.2	<0.5		7	ΑN
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	[LAB_DUP]		2	<0.4	30	82	78	<0.1	7	23	H	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	425	<50	<100	<100	<50	<0.2	<0.5			Not Detected
			S	<0.4	78	88	56	<0.1	9	23		60:0	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5			NA
1911 1912			7	<0.4	18	300	m	40.1	=	31	+	<0.05	A S	NA	NA:	¥.	NA	\$	\$	<100	<100	\$	<0.2	<0.5			NA:
Part		+	ه و	<0.4	16 2	210	7	40.1	o (24	+	<0.05	NA V	NA S	NA V	NA C	NA .	5 5	S 5	V100	400	05 £	40.2	40.5	+		Y.
1			א פ	4.6	8 8	180	3 -	7.6	y ;	2 2	+	0.3	T.0>	TOY NA	T.O.	1.05 NA	TO VI	9 4	8	700	700	6	20.5	0.05			Not Detected
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			4	4.05	7 27	220	17	9 0	4 6	2 2	+	30.05	0.10	\$0.1	0.1	0,1	0.1	55	200	<100	400	8 8	<0.2	0.5	+		Not Detected
Octability Oct			4	<0.4	19	440	m	<0.1	10	25	H	<0.05	ΑN	ΝA	AN	ΑN	NA	\$25	\$20	<100	×100	\$20	<0.2	<0.5			ΑN
10,000,201 Final Parish Shifting 1			4>	<0.4	16	400	1	<0.1	6	22		<0.05	NA	NA	NA	NA	ΝΑ	<25	<50	<100	<100	<50	<0.2	<0.5			NA
March Marc			7	<0.4	36	94	24	<0.1	6	36	+	<0.05	<0.1	<0.1	40.1	0.1	40.1	55	\$20	<100	√100	\$20	<0.2	<0.5			Not Detected
	[LAB_DUP]		9 1	4.0	25	100	5 20	0.1	= =	¥ 8	+	<0.05	40.1	40.1	40.1	40.1	0.1	50 5	05 £	4100 4100	400	05 5	40.2	40.5	+		V S
1.0 1.0		-	\ \\	4.0	2 6	12	OT 2	9. G	cr c	2	ł	2.6	5 6	NA 108	NA 10	\$ 6	AN O	9 %	8 8	V 100	000	8 8	<0.2 <0.2	0.5	ł	7 5	Not Detected
1		H	4	<0.4	83	170	7	<0.1	15	42	۱	0.3	ΑN	NA	NA	AN	W	55	\$	<100	<100	\$	<0.2	<0.5	-	. A	NA
1.0 1.0			Ŋ	<0.4	70	210	22	0.1	80	29	H	9.05	<0.1	<0.1	<0.1	40.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5			Not Detected
Particular Par			7	<0.4	24	490	4	<0.1	11	78		<0.05	ΑN	NA	NA	AN	NA	4 25	<50	<100	<100	<20	<0.2	<0.5			NA
14-15 14-1			15	<0.4	33	66	120	0.1	m :	88 1	+	0.1	<0.1	<0.1	0.1	0.1	40.1	52	\$20	<100	00T>	\$ \$0	<0.2	<0.5	+	-	Not Detected
Colition Figure Colition		+	4	40.4	17	420	۰, م	9.1	2 5	27	+	90.06	A S	NA NA	A S	A N	A N	5 5	050	V100	700	05 65	<0.2	Q.5	+	+	A S
Part		+	ţ	4.0	3 5	34	12	9 6	3 -	3 4	+	0.05	NA 02	A 6	A C	5 6	4 C	8 6	8 8	700	007	9 5	<0.2 <0.2	0.5	ł	+	Not Detected
Part		t		4.0	1 6	5 2	12	0.1		8 8	+	0.05	0.1	0.1	5 6	1.0	5 6	8	8 8	QU V	400	8 8	20.5	0.5		7 5	NA NA
13-15 SIRY Clay 4 64 55 110 7 0 4 64 5 6 110 7 0 1 1 4 1 6 64 1 1 4 0 1 6 1 4 1 6 1 1 4 0 1 6 1 6 1 4 1 6 1 1 4 0 1 6 1 6 1 1 4 0 1 6 1 6 1 1 4 0 1 6 1 6 1 1 4 0 1 6 1 6 1 1 4 0 1 1 6 1		H	7	<0.4	24	32	14	<0.1	Ŋ	11	H	3.4	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5		v	Not Detected
Color Stity Clay Stity Cl			4	<0.4	25	110	7	0.7	6	18	H	<0.05	NA	NA	NA	AN	NA	<25	<50	<100	<100	<50	<0.2	<0.5			NA
1			10	40.4	29	190	52	<0.1	14	61		0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<20	<0.2	<0.5			Not Detected
Coli			'n	<0.4	74	180	4	<0.1	15	22	+	<0.05	ΑZ	NA.	NA	Α V	NA	\$	\$	<100	VT00	\$	<0.2	<0.5	+		Y.
Poul Duplicate of Ply 3 Paul Plan Plan Plan Plan Plan Plan Plan Pla		+	9	<0.4	S 5	190	52 5	<0.1	14	9 8	+	0.2	<0.1	¢0.1	<0.1	0.1	0.1	5 5	8	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	400	05 5	<0.2 0.3	40.5	+		Y :
Again Depleted of Project Again		+	2 ه	4.0	3 2	130	17	9 6	ی .	140	+	0.03	NA 02	A 0	4 C	5 6	A 6	3 6	8 8	700	700	9 5	<0.2 <0.2	0.5	ł	+	¥ AN
A8_DUPJ 6-0.1 Laboratory Duplicate 5 G 0.4 15 170 19 G 0.1 7 6.0 NA		t		<0.4	191	160	24	100	,	29	H	0.05	AN	NA	NA	NA	NA	35	\$20	<100	<100	\$50	40.2	<0.5	ŀ	+	NA N
Columbrate Na	- [LAB DUP]		'n	<0.4	13	170	51	<0.1	7	9	H	AA	ΑN	NA	NA	AN	NA	¥	Ą	N	AM	NA	NA	NA			NA
1		t	Ā	AN	Ā	AN	NA	AN	NA	AN	H	AA	ΝΑ	NA	NA	NA	NA	AN	ĄN	NA	AA	AN	NA	AN			Detected
39 39 39 39 39 39 39 39 39 39 39 39 39			Ν	NA	A	Ν	NA	AN	AA	ΝA		ΝΑ	Ą	NA	NA	ΝΑ	ΑN	ΑN	Ą	AA	ΑN	ΑN	Ā	ΝΑ		Ą	Detected
15			5	ş	ş	ş	5	ş	ş	5	9	9	5	ç.	ç.	5	9	ş	9	ş	9		9	+	+	9	ţ
15 4PQL 91 490 170 0.7 18 140 85 5.4 4PQL 4PQL 4PQL 4PQL 4PQL 4PQL 4PQL 4PQ	Total Number of Samples		8	S.	39	80	S.	SS.	60	28	200	88	70	07	70	707	707	8	28	×	200	SS.	200	+	+	20	qT
	Maximum Value		15	<pql< td=""><td>91</td><td>490</td><td>170</td><td>0.7</td><td>18</td><td>140</td><td>82</td><td>5.4</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>^PQ[</td><td><pql< td=""><td>170</td><td>200</td><td>370</td><td><pql< td=""><td></td><td></td><td>or Jo</td><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	91	490	170	0.7	18	140	82	5.4	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>^PQ[</td><td><pql< td=""><td>170</td><td>200</td><td>370</td><td><pql< td=""><td></td><td></td><td>or Jo</td><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>^PQ[</td><td><pql< td=""><td>170</td><td>200</td><td>370</td><td><pql< td=""><td></td><td></td><td>or Jo</td><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>^PQ[</td><td><pql< td=""><td>170</td><td>200</td><td>370</td><td><pql< td=""><td></td><td></td><td>or Jo</td><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>^PQ[</td><td><pql< td=""><td>170</td><td>200</td><td>370</td><td><pql< td=""><td></td><td></td><td>or Jo</td><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td>^PQ[</td><td><pql< td=""><td>170</td><td>200</td><td>370</td><td><pql< td=""><td></td><td></td><td>or Jo</td><td>Detected</td></pql<></td></pql<></td></pql<>	^PQ[<pql< td=""><td>170</td><td>200</td><td>370</td><td><pql< td=""><td></td><td></td><td>or Jo</td><td>Detected</td></pql<></td></pql<>	170	200	370	<pql< td=""><td></td><td></td><td>or Jo</td><td>Detected</td></pql<>			or Jo	Detected
Oncentration above the SCC2	incentration above the CT1 incentration above SCC1			VALUE																							
BOOK ALL ACCOUNTS AND A	incentration above the SCC2			VALUE																							

	ATORY TCLP R ng/L unless sta	ESULTS Ited otherwise		
			Lead	B(a)P
PQL - Envirola	b Services		0.03	0.001
TCLP1 - Gener	al Solid Waste		5	0.04
TCLP2 - Restri	cted Solid Was	te	20	0.16
TCLP3 - Hazar	dous Waste		>20	>0.16
Sample Reference	Sample Depth	Sample Description		
вн3	0.3-0.5	F: Sandy Silty Clay	NA	0.0086
вн8	0.02-0.2	F: Silty Sand	NA	<0.001
TP14	0-0.1	F: Silty Clay	0.07	NA
TP15	0.9-1.0	F: Sandy Silty Clay	NA	<0.001
SDUP3	0-0.1	Duplicate of TP14	0.3	NA
Total Numb	er of samples		2	3
Maximum V	'alue		0.30	0.0086
General Solid Restricted Sol Hazardous Wa Concentration	id Waste aste		VALUE VALUE Bold	

			TRH >C10-C16	50 100 100 0.2 0.5 1 50 100 100 0.2 0.5 1	550 5100 5100 502 515 51	<50 <100 <100 <0.2 <0.5	00 00 00 00 00 00 00 00 00 00 00 00 00	21 21 21	<50 <100 <100 <0.2 <0.5	S50 S100 S100 S0.2 S0.5	NC NC NC NC NC	4	<50 <100 <100 <0.2 <0.5 <60 <100 <100 <0.2 <0.5	20 20 20 20 20 20 20 20 20 20 20 20 20 2	21 21 21	<50 <100 <100 <0.2 <0.5	<50 <100 <100 <0.2 <0.5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<50 <100 <100 <0.2		<50 <100 <100 <1 <1		%26 %26	
**************************************			TRH >C16-C34	100 100 0.2 0.5 1 100 100 0.2 0.5 1	<100 <100 <0.2 <0.5 <1	<100 <100 <0.2 <0.5	20 20 20 20 20 20 20 20 20 20 20 20 20 2	11	<100 <100 <0.2 <0.5	C100 C100 C0.2 C0.3	nc nc nc nc	100	<100 <100 <0.2 <0.5	20 20 20 20 20 20 20 20 20 20 20 20 20 2	21	<100 <100 <0.2 <0.5	<100 <100 <0.2 <0.5	2 20 20 20 20 20 20 20 20 20 20 20 20 20	<100 <100 <0.2		<100 <100 <1 <1		%26 %26	
**************************************			TRH >C34C40	100 0.2 0.5 1	c100 c02 c0.5 c1	<100 <0.2 <0.5	20 20 20 20 20 20 20 20 20 20 20 20 20 2	11	<100 <0.2 <0.5	C100 S0.2	nc nc nc	10.	<100 <0.2 <0.5	20 20 20 20 20 20 20 20 20 20 20 20 20 2	1	<100 <0.2 <0.5	<100 <0.2 <0.5	2 2 2	<100 <0.2		<100 <1 <1		%26 %26 -	
**************************************			3enzene Foluene enzene	0.2 0.5 1	00.2 c0.5 c1	<0.2 <0.5	20 20	2	<0.2 <0.5	20.2 UC UC	uc uc	10.	<0.2 <0.5 <0.2 <0.5	2 2	=	<0.2 <0.5	<0.2 <0.5	2 2	<0.2		D D		%26	
			əuəzuəq∦ųįΞ	1 1	0.5	<0.5		+	<0.5	n 0.5	Н	ç	40.5	2 2	4	<0.5	40.5	2 2		-	+		%26	
Comparison					+	₽	2 8	2	⊽.	7 2	2	I.	* *		J.		v	6 6				1.1		
			-30Fix 4+0	20				1			Н	+			+	Н		+	Н	Н	+	Н	+	
					+			+	Н		Н	+			+	Н		+	Н	н	+	Н	-	
					+	н	-	+	Н	+	Н	+	+	н	+	Н	+	+	н	_	+	Н	35	\downarrow
			ycsusbyttylene	0.1	100	<0.1		+	<0.1	100	Н	ç	40.1 40.1	2 2	2	<0.1	<0.1	-	<0.1		+	Н	ŀ	
					-			+			Н	+			+	Н		+		-	+		1.	
					-			+			Н	+			+	Н		-		-	+	Н].	\parallel
					-			+		-	+	+			+	н		-	\vdash	-	+	Н	1.	\parallel
					-			+		-	\vdash	+	-		-			_	Н		+	Н	1.	
			synene.	0.1	0.3	0.4	0.35	667	0.1	0.075			07	0.25	#0#	0.1	0.1	3 8	1.0>		+	Н	1	
**************************************	**************************************				-			-	<0.1	1.00	2				-	Н		-			+	Н	J.	
######################################	Manufactory				-			+			Н	_			-	Н		+		-	+	Н	1.	\parallel
**************************************	manuscripto-curron 2				_			-				-			-	-		_		_	+	Н	1.	\mathbb{H}
*** *** *** *** *** *** *** *** *** *	**************************************				-			-	_			-				н		-			+	Н	ľ	\parallel
######################################	### Company Part of the company Part of				-			+			Н	-			-	Н		-			+	Н	1	
			geuzo(8'y'ı)bei.kıeue	0.1	0.1	0.2	0.15	8/0	40.1	200	20	-			-	<0.1	<0.1	2 2	ш	-	∀			
## 1	Chell - demonstrated Chell							+	-	+	Н	١.			+	_		+	H.].	Ħ		
*** *** *** *** *** *** *** *** *** **	### 1			-	+			+	Н	+	Н	+			+	Н		+	H.	\parallel	+	H	ľ	
### Composed Provided	*** *** *** *** *** *** *** *** *** **				+			+			Н	+			+	L		+		\parallel	1	H	ľ	
### Compression of the control of th	1				+			H			Н	+			+			+	-	\parallel	1	H	ŀ	
### 1	### Compression for the control of t				-			+		+	Н	+			+	١.		+		П	1	П	ŀ	
### Second Properties	### Compression of the control of th				-			+		. 2	2	-			-	١.		2 2		Ħ	1.	Ħ		
### 1	### Complementation of the property of the pro				+			H			Н	+			+	١.		+	.	H	1	H	ľ	
1 Continue continue 1 2 2 2 2 2 2 2 2 2	### Complement of the properties of the properti				+			+			Н	+			+			+		H			 -	\parallel
**	### Complement of the properties of the properti				-			+		+	Н	+	+		+	١.		+	H.	+			 - -	\mathbb{H}
** Control C	TOCO -qq 12 12 12 12 12 12 12 12 12 12 12 12 12				+			H		+	Н	+			+	L		+	1	\parallel	ŀ		1	\parallel
** Cooperation of the composition of the composit	Total Approximate Company Comp				1.			+		+	Н	+			+			+	<u> </u>	Ц	[I	-	
** Control C	## TOC 440 2 2 3 4 6 6 7 7 7 6 6 6 7 7 7 6 6 6 7 7 7 7 7				+			H			Н	+			+	١.		+	<u>.</u>	Ц	ŀ		ŀ	
**	TOT 40 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				٠.			+		+	Н	+			+	L		+		\parallel	1.	Ħ		
**	Composition				+			+			Н	+			+	١.		+	Η.	H	1.	H	1.	
Community Comm	Voltace Volt				+			+		+	Н	+	+		+	١.		+	,	\parallel			1	\mathbb{H}
Commonwell Com	Common C				-			H		+	Н	+			+	١.		+	-	\parallel	1	H	1	
** \$\begin{array}{c c c c c c c c c c c c c c c c c c c	### 1				+			H			Н	+			+	١.		+		μĪ	F	Ī	ſ	
	Notice-recording transfer 1				-			+	Н	. 2	2	+			+	Н		2 2	Į.	Ц	ŀ		ŀ	
### Comparison of the companion of the c	Materian-prodesympate Company				+			+		+	Н	+			+	L		+		H	ŀ		ŀ	
** 1	### 1				-			+		+	Н	+			+	١.		+		+	1	1	1.	\parallel
Companies Comp	### 1				-			+			Н	+			+	L		+		\parallel	ľ		 -	\parallel
Companion Comp	### A Providence of the control of t				+			+		+	Н	+			+	L		+	1	\mathbb{H}	1		1	\parallel
**	Continue				٠.			H		+	Н	+			+	١.		+	1	Ц	F		1.	
**	Continuent Con				-			+		. 2	2	, 5	40.1	2 2	1	١.	•	2 2	Į.	П	ŀ		ŀ	
Company Comp	Communication Communicatio				+			H			Н	+			+	١.		+	[].	H	ŀ		J.	
1	Bennoon 1				+			H		+	Н	+			+			+	H	\parallel	ŀ		1.	\parallel
	Community Comm				+			+		+	Н	+	+		+	١.		+	H.	+			 -	\mathbb{H}
	4 4 5 5 5 5 5 5 5 5				+		-	+		+	Н	+	+	Н	+	١.	+	+	1	$^{\parallel}$	+	\parallel	+	\mathbb{H}
	Coppuration				+	Н	+	+	Н	+	Н	+	+	+	+	ł.	+	+	\$	Ц	+	Ц	+	\downarrow
**************************************					-			+			Н	+			+	Н		+	Н	Н	<0.01		1	
A S S S S S S S S S S S S S S S S S S S	20		muimond	7 7	95	S	55.5	4.7	21	20.5	33	;	22	26.5	840	Н		+	<mark> </mark>	H	-		ŀ	
Z	2				+			+	Н	+	Н	4			-	Н		+		H		-].	
Viuosenia di 1919 n.		JK			+			+		+	Н	+	+		-	Н		-	3	H	0.03 <0.0		 -	\parallel
BROWNER (212120) INTERIOR DESCRIPTION OF THE PROPERTY OF THE P	는 [기계	inviron			٠.			+	Н		Н	\perp			-	Н			Ш	ш		H	1	

Appendix B Site-specific ecological investigation levels

Chromium

Inputs
Select contaminant from list below
Cr III
Below needed to calculate fresh and
aged ACLs
Enter % clay (values from 0 to 100%)
39
Below needed to calculate fresh and
aged ABCs
Measured background concentration
(mg/kg). Leave blank if no measured
value
or for fresh ABCs only
Enter iron content (aqua regia
Enter iron content (aqua regia method) (values from 0 to 50%) to
Enter iron content (aqua regia
Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background
Enter iron content (aqua regia method) (values from 0 to 50%) to
Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background
Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background or for aged ABCs only Enter State (or closest State)
Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background or for aged ABCs only Enter State (or closest State) NSW
Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background or for aged ABCs only Enter State (or closest State)

Outputs						
Land use	Cr III soil-s	pecific EILs				
	(mg contaminar	nt/kg dry soil)				
	Fresh	Aged				
National parks and areas of high conservation value	#NUM!	210				
Urban residential and open public spaces	#NUM!	630				
Commercial and industrial	#NUM!	1000				

Copper

Inputs
Select contaminant from list below
Cu
Below needed to calculate fresh and aged ACLs
Enter cation exchange capacity
(silver thiourea method) (values from
0 to 100 cmolc/kg dwt)
20
Enter soil pH (calcium chloride
method) (values from 1 to 14)
7.3
Enter organic carbon content (%OC)
(values from 0 to 50%)
1
Below needed to calculate fresh and
aged ABCs
Measured background concentration
(mg/kg). Leave blank if no measured value
or for fresh ABCs only
Enter iron content (aqua regia
method) (values from 0 to 50%) to
obtain estimate of background
or for aged ABCs only
Enter State (or closest State)
Enter State (or closest State) NSW
NSW
,

Outputs					
Land use	Cu soil-sp	ecific EILs			
	(mg contaminar	nt/kg dry soil)			
	Fresh	Aged			
National parks and areas of high conservation value	#NUM!	85			
Urban residential and open public spaces	#NUM!	230			
Commercial and industrial	#NUM!	320			

Nickel

Inputs
Select contaminant from list below
Ni
Below needed to calculate fresh and
aged ACLs
Enter cation exchange capacity
(silver thiourea method) (values from
0 to 100 cmolc/kg dwt)
20
Below needed to calculate fresh and
aged ABCs
Measured background concentration
(mg/kg). Leave blank if no measured
value
ar far frach ABCs only
or for fresh ABCs only
Enter iron content (aqua regia
Enter iron content (aqua regia method) (values from 0 to 50%) to
Enter iron content (aqua regia
Enter iron content (aqua regia method) (values from 0 to 50%) to
Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background
Enter iron content (aqua regia method) (values from 0 to 50%) to
Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background
Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background or for aged ABCs only Enter State (or closest State)
Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background or for aged ABCs only Enter State (or closest State)
Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background or for aged ABCs only Enter State (or closest State)
Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background or for aged ABCs only Enter State (or closest State)

Outputs					
Land use	Ni soil-sp	ecific EILs			
	(mg contaminar	nt/kg dry soil)			
	Fresh	Aged			
National parks and areas of high conservation value	#NUM!	50			
Urban residential and open public spaces	#NUM!	270			
Commercial and industrial	#NUM!	460			

Zinc

Inputs
Select contaminant from list below
Zn
Below needed to calculate fresh and
aged ACLs
Enter cation exchange capacity (silver thiourea method) (values from
0 to 100 cmolc/kg dwt)
3 ,
20
Enter soil pH (calcium chloride
method) (values from 1 to 14)
7.3
Below needed to calculate fresh and
aged ABCs
Measured background concentration
(mg/kg). Leave blank if no measured value
value
or for fresh ABCs only
Enter iron content (aqua regia
method) (values from 0 to 50%) to
obtain estimate of background
obtain estimate of background
obtain estimate of background or for aged ABCs only
or for aged ABCs only
·
or for aged ABCs only
or for aged ABCs only Enter State (or closest State) NSW
or for aged ABCs only Enter State (or closest State)

Outputs						
Land use	Zn soil-sp	ecific EILs				
	(mg contamina	nt/kg dry soil)				
	Fresh	Aged				
National parks and areas of high conservation value	#NUM!	230				
Urban residential and open public spaces	#NUM!	770				
Commercial and industrial	#NUM!	1200				

Appendix C Toxicity summary for benzo(a)pyrene

C1 Benzo(a)pyrene

General

Several comprehensive reviews of polycyclic aromatic hydrocarbons (PAHs) and benzo(a)pyrene (BaP) in the environment and toxicity to humans are available (ATSDR 1995; CCME 2008; USEPA 2017; WHO 1998).

PAHs are a large group of organic compounds with two or more fused aromatic rings made up of carbon and hydrogen atoms. PAHs are formed from incomplete combustion of organic materials such as processing of coal, crude oil, combustion of natural gas, refuse, vehicle emissions, heating, cooking and tobacco smoking as well as natural processes including carbonisation. A natural background level is due to PAH production in plant species. Because of such widespread sources, PAHs are present almost everywhere. Food is considered to be the major source of human exposure to PAH due to the formation of PAH during cooking or from atmospheric deposition of PAHs on grains, fruits and vegetables (WHO 1998).

There are several hundred PAHs, including derivatives of PAHs. The best known (and studied) is BaP. While there are hundreds of PAHs, typically only 16 individual PAHs are analysed in site contamination investigations. These individual PAHs address a broad range of the equivalent carbon spectrum and are therefore more commonly reported and assessed (WHO 1998).

The major sources of PAHs in soil at any given location invariably contribute a mixture of PAHs, not just single compounds. Various PAH source types can be distinguished based on the characteristic compositions of PAH mixtures and information on the site history, but the contaminated soil matrix is nonetheless challenging from an environmental risk assessment perspective, since in a PAH contaminated soil there is likely to be a diverse compositional range of non-carcinogenic, and carcinogenic PAHs of varying potency (WHO 1998).

The major approach advocated by regulatory agencies such as the NEPC (Fitzgerald, D.J. 1991, 1998; Fitzgerald, D. James, Robinson & Pester 2004; NEPC 1999 amended 2013d), California EPA (CEPA 1999), Netherlands (Baars et al. 2001), the UK Environment Agency (UK DEFRA and EA 2002), Canada (CCME 2008, 2010) and USEPA (USEPA 2014) for assessing the human health risks of PAH-containing mixtures involves the use of 'toxicity equivalence factors' (TEFs). This approach relates the toxicity of other (potentially carcinogenic) individual PAHs to that of BaP, the most widely studied carcinogenic PAH.

There are more than a dozen sets of equivalency numbers that have been proposed over the last two decades. The most recent (published final) review of TEFs and their basis, presented by CCME suggests the use of TEFs recommended by the World Health Organization, with minor modifications (CCME 2008, 2010; WHO 1998). This is a scheme based on order of magnitude cancer potency.

Any finer-scale assertions about relative potency for more generic application are hard to justify given the current state of knowledge and confounding influences such as the route of exposure, or non-additive effects in complex PAH mixtures. It is not currently possible to develop different relative potency schemes across different exposure routes (oral, dermal, inhalation), owing to a lack of data. Hence, the TEFs adopted have been applied for all routes of exposure for the carcinogenic PAHs

assessed. The application of the TEFs is relevant to the assessment of PAHs that are considered to be carcinogenic. Other PAHs that are not carcinogenic should be assessed separately on an individual basis using a threshold approach.

Table C1 table presents a summary of the TEFs adopted for the assessment of carcinogenic PAHs:

Table C1: TEFs for PAHs (CCME 2010)

РАН	IARC Classification	US EPA Classification	TEF
Benzo(a)anthracene	2B	B2	0.1
Benzo(a)pyrene	1	B2	1
Benzo(b+j)fluoranthene	2B	B2	0.1
Benzo(k)fluoranthene	2B	B2	0.1
Benzo(g,h,i)perylene*	3	D	0.01
Chrysene	2B	B2	0.01
Dibenz(a,h)anthracene	2A	B2	1
Indeno(1,2,3-cd)pyrene	2B	B2	0.1

Notes: 1/A= Human Carcinogen, 2A/B2= Probable Human Carcinogen, 2B/C=Possible Human Carcinogen, 3/D= Not classifiable.

The toxic effects of different PAH compounds in a mixture are additive. Experimental evidence suggests that this is a fair assumption (CCME 2008, 2010; Fitzgerald, D.J. 1991, 1998).

The following relates to the approach used to assess BaP (which can be used for the assessment of BaP alone or for carcinogenic PAHs using the above TEFs).

Dermal Exposures

BaP is suggested to act largely as a point-of-contact carcinogen (Knafla et al. 2006) when dermal exposure occurs rather than via systemic mechanisms. Therefore, it is more appropriate to derive soil guideline values for the dermal route of exposure using a route-specific slope factor (i.e. a slope factor based on studies using dermal exposure only), as opposed to considering it on the basis that BaP is absorbed through skin into the circulatory system and the internal dose can be assessed using the oral slope factor.

For most compounds such data are not available, however, for BaP Knafla et al. (2011) from Health Canada derived a dermal slope factor, normalised to a per unit skin surface area basis, that is relevant to the assessment of BaP in soil in skin (Knafla et al. 2011). The dermal slope factor derived by Knafla et al. was 3.5 (µg/cm²/day)-¹ and appropriate methods and parameters have been suggested by Knafla et al. (2011) for the use of this factor in the assessment of soil exposures. The dermal slope factor is an extension of previous work published by these researchers where a dermal slope factor was derived on the basis of skin carcinogenicity from skin painting studies with mice (Knafla et al. 2006). The revised dermal slope factor (Knafla et al. 2011) considered various factors for interspecies extrapolation, particularly in relation to sensitivity (to tumour development) and differences in epidermal (target tissue) thickness. This dermal slope factor has not yet been adopted for use by other international agencies, however, CCME (CCME 2010) indicate that Health Canada may consider the revised dermal slope factor once published (as occurred in 2011).

^{*} Benzo(g,h,i)perylene included due to positive findings in genotoxicity studies (WHO 1998). Note there are insufficient data available to determine carcinogenicity.

USEPA 2017 notes the following in their discussion of the risk of cancer via dermal exposure.

Skin cancer in humans has been documented to result from occupational exposure to complex mixtures of PAHs including benzo[a]pyrene, such as coal tar, coal tar pitches, unrefined mineral oils, shale oils, and soot. In animal models, numerous dermal bioassays have demonstrated an increased incidence of skin tumors with increasing dermal exposure of benzo[a]pyrene in all species tested, although most benzo[a]pyrene bioassays have been conducted in mice.

Carcinogenicity studies in animals by the dermal route of exposure are available for benzo[a]pyrene and are supportive of the overall cancer hazard. A quantitative estimate of skin cancer risk from dermal exposure is not included in this assessment, as methodology for interspecies extrapolation of dermal toxicokinetics and carcinogenicity are still under development.

The USEPA review did not include consideration of the Knafla studies from Health Canada.

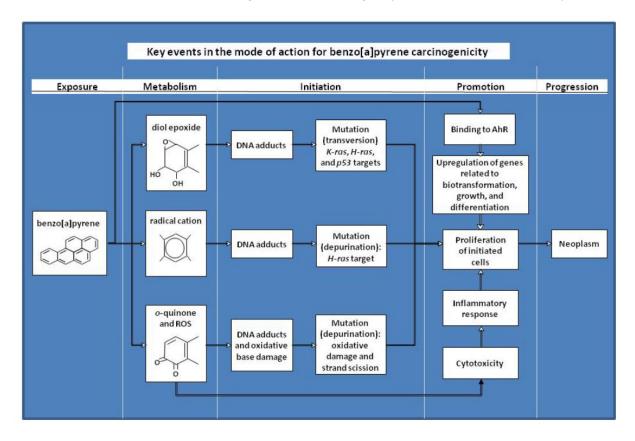
Background

Intakes of BaP from sources other than soil have been considered to range from 0.166-1.6 μ g/day with intakes derived from food identified as the most significant (Fitzgerald, D.J. 1991). In 2006 the WHO Joint Expert Committee on Food Additives (JECFA) reviewed potential intakes and health effects of PAHs in food. They found that intake of BaP was on average 0.28 μ g/day with a high level intake of 0.7 μ g/day (WHO 2006).

Classification

The International Agency for Research on Cancer has classified BaP as 1: human carcinogen (IARC 2010). The USEPA has classified BaP as B2: probable human carcinogen (USEPA 2014).

Toxicity reference values


The most recent USEPA toxicological review notes that exposure to BaP is associated with developmental (including developmental neurotoxicity), reproductive, and immunological effects in animal studies. Epidemiology studies (i.e. studies in people) have shown exposure to BaP is associated with adverse birth outcomes (including reduced birth weight, postnatal body weight, and head circumference), neurobehavioral effects, and decreased fertility (USEPA 2017).

In regard to cancer, studies have shown that BaP is carcinogenic at multiple tumour sites (alimentary tract, liver, kidney, respiratory tract, pharynx, and skin) by all routes of exposure in animals. In addition, occupational studies where people are exposed to PAH mixtures such as aluminium production, chimney sweeping, coal gasification, coal-tar distillation, coke production, iron and steel founding, and paving and roofing with coal tar pitch there is strong evidence of carcinogenicity, particularly lung cancer (USEPA 2017).

BaP is an indirect carcinogen, that is, its carcinogenicity results from its metabolites, primarily various epoxides, as opposed to BaP itself. These metabolites can attach to DNA forming adducts which cause disruption when DNA replicates. Several different types of tumours have been observed as a result of exposure to BaP, although tumour development is closely related to route of

administration, i.e., dermal application induces skin tumours and oral administration induces gastric tumours. BaP is considered to be a genotoxic carcinogen (USEPA 2017; WHO 1998).

Proposed metabolic activation pathways and key events in the carcinogenic mode of action for benzo(a)pyrene (USEPA 2017)

In addition, BaP has been demonstrated to be a skin irritant and dermal sensitiser (WHO 1998).

The USEPA has concluded that BaP (and carcinogenic PAHs assessed on the basis of TEFs) acts via a mutagenic mode of action and recommends that susceptibility associated with early lifetime exposures be addressed. No non-threshold values available for BaP have been derived to specifically address early lifetime susceptibility and hence this issue needs to be addressed when characterising exposure to BaP at a particular site depending on the age of people who may be users of the site (USEPA 2005, 2017).

On this basis, a peer-reviewed non-threshold reference value is recommended for BaP. **Table C2** summarises non-threshold values that are available from Level 1 Australian and International sources:

Table C2: Published toxicity reference values for PAHs/benzo(a)pyrene

Source	Value	Basis/Comments
ADWG (NHMRC 2011 updated 2022)	Not available	Current guideline of 0.00001 mg/L is based on the consideration of health effects in relation to the limit of determination for analysis. The assessment provided by the WHO is noted.
ocs	No evaluation available	
WHO (WHO 2017) (WHO 2000) (WHO 2010)	SF = 0.5 (mg/kg/day) ⁻¹ UR =8.7x10 ⁻⁵ (ng/m ³) ⁻¹	A drinking water guideline of 0.0007 mg/L was derived on the basis of an excess lifetime cancer risk of10 ⁻⁵ from an oral carcinogenicity study and a two-stage birth-death mutation model. Slope factor has been calculated on the basis of a 70kg adult and consumption of 2 L water per day. Inhalation unit risk derived based on observations in coke oven workers to mixtures of PAHs. It is noted that the composition of PAHs to which coke oven workers are exposed may differ from that present in ambient air or derived from soil contamination. It is noted that an inhalation UR is in the same order of magnitude as that derived using a linear multistage model associated with lung tumours in a rat inhalation study of coal tar/pitch condensation aerosols.
MfE (MfE 2011)	SF = 0.233 (mg/kg/day) ⁻¹	Review of the carcinogenic reference values available for oral intakes by MfE considered the range of values available and differences in approaches adopted for low dose extrapolation. The application of cross-species scaling appeared to be the most significant factor affecting the cancer potency estimates. While not applying cross-species scaling is consistent with the approach outlined in NHMRC, the MfE review recommended that it is appropriate for BaP (NHMRC 1999). Review of available studies (14 risk estimates using 4 databases) resulted in the calculation of a slope factor based on the geometric mean and scaled allometrically.
MfE (MfE 2002)	Air GV = 0.0003 μg/m ³	Air guideline value (based on annual average) is based on the WHO unit risk value (noted above) and adopting a target risk of 1 in 10,000 to 1 in 100,000.
UK (UK DEFRA and EA 2002)	Derived index doses from WHO evaluations	Oral index dose derived on the basis of WHO approach and a lifetime cancer risk of 10 ⁻⁵ . Inhalation index dose based on WHO approach and adopting an air guideline of 0.25 ng/m ³ . The air guideline is equivalent to a lifetime cancer risk of 4x10 ⁻⁵ .
RIVM (Baars et al. 2001)	SF = 0.2 (mg/kg/day) ⁻¹	Oral SF derived by RIVM based on a chronic oral carcinogenic rat study and linear multistage model. The study considered was more recent than that considered by the WHO. No inhalation assessment is provided by RIVM.
CCME (CCME 2010)	SF = 2.3 (mg/kg/day) ⁻¹	Oral SF derived from a less than lifetime diet study on inbred CFW-Swiss mice associated with incidence of papillomas and squamous cell carcinomas and linear extrapolation. This is the same study as used by the USEPA in the derivation of their oral slope factor. The CCME review also noted that dermal exposures and primary oral exposures result in different kinds of cancers. Health Canada is currently reviewing data with respect to the derivation of a dermal cancer slope factor, which may require consideration when peer-reviewed and published. The oral slope factor has been used to derive a soil guideline associated with exposures via oral, dermal and inhalation exposures.

Source	Value	Basis/Comments
OEHHA (CEPA 1999)	SF = 11.5 (mg/kg/day) ⁻¹ UR =0.0011 to0.0033 (ug/m³) ⁻¹	Oral SF derived using the same model and study as reported by the USEPA (IRIS 2010) and CCME (2008), with the upper end of the range of values adopted by OEHHA.
		Inhalation UR derived on the basis of respiratory tract tumours in an inhalation study in hamsters and a linearised multistage model.
USEPA (USEPA 2014)	SF = 7.3 (mg/kg/day) ⁻¹	Oral SF (last reviewed in 1994) derived on the basis of the same study considered by CCME (above) where a range of slope factors were derived (4.5 to 11.7 (mg/kg/day) ⁻¹). The geometric mean was adopted as the recommended slope factor for derivation of a drinking water guideline. No assessment of inhalation toxicity is available.
USEPA (USEPA 2017)	SF = 1 (mg/kg/day) ⁻¹ IUR = 6x10 ⁻⁴ (μg/m ³) ⁻¹	Oral SF was derived using two studies from 1998 and 2001. The study from 2001 was conducted on male and female Wistar rats which showed forestomach, liver, oral cavity, jejunum, kidney, auditory canal (Zymbal gland) tumours, and skin or mammary gland tumours. The 1998 study reported forestomach, oesophageal, tongue, and larynx tumours in female B6C3F1 mice. Slope factors were calculated using body weight scaling to determine a human equivalent dose. The slope factors for the study in rats ranged from 0.04 to 0.3 (mg/kg/day) ⁻¹ . For the mice study the slope factor was 1.4 (mg/kg/day) ⁻¹ . There are no data to support any one result as most relevant for extrapolating to humans. If it is assumed all slope factors are equally relevant for extrapolating to humans, then statistical evaluation of the data gives slope factors of 0.5, 0.6 and 0.7 per mg/kg-day depending on the statistic. The mice study found tumours in forestomach, an organ not found in people and which may increase how long the stomach lining is exposed to BaP. The rat study used exposure via gavage rather than in food. So, while the studies were robust there are some aspects that create uncertainty. For the inhalation unit risk (IUR), the single lifetime inhalation study available for BaP was used. This study was undertaken in 1981 and used hamsters. Other studies since have used instillation to dose animals and these supported the findings but are not able to be used to develop the IUR.

The review conducted by MfE provided a discussion of the impact of differences in methodology used by various agencies for low dose extrapolation (MfE 2011).

There is a wide range of non-threshold reference values available for oral intakes of BaP (and the other carcinogenic PAHs).

The MfE (MfE 2011) discussion notes that the following:

- the WHO slope factor based on a study from 1990 used unrealistic exposure conditions (rejected by USEPA)
- the WHO determined a slope factor of 0.5 per mg/kg/day using this study and their approach for genotoxic carcinogens but USEPA determined a slope factor of 5.9 per mg/kg/day using the same study and their approach for genotoxic carcinogens which included allometric scaling
- other organisations (California, UK, Canada) have used a much older study (from 1967) which did not cover exposure over a whole lifetime

- the major difference between all the various slope factors for BaP was the different approaches to extrapolate from the point of departure dose (usually 5 or 10% effect) to the slope factor, including allometric scaling rather than the toxicological data
- the US agencies use allometric scaling while some European agencies and the NHMRC in Australia recommend against use of such scaling when calculating slope factors
- a number of assessments covered in this review have used the same more recent studies as used by the USEPA in their most recent assessment from 2017
- the most recent studies used by the USEPA (and other reviews) are ones where the animals were exposed to coal tar.

As a result, the geometric mean value for the slope factors without scaling was chosen for use in contaminated land investigations in Australia.

As noted in Appendix A2 of Schedule B7 of the ASC NEPM, a number of variations were considered in the HIL calculations. The calculations of the HILs considered the use of a range of different values for some of the assumptions required for these calculations. The different values were presented to the Australian regulators overseeing the ASC NEPM process for their consideration.

The variations included using:

- the standard USEPA approach to assess exposure via dermal contact
- the Knafla et al. approach for dermal contact
- the slope factor derived from the WHO drinking water guidelines (0.5 per mg/kg bw/d)
- the slope factor from the NZ Ministry for the Environment guidance (0.233 per mg/kg bw/d)
- an age dependent adjustment factor for cancer or not (NEPC 1999 amended 2013d).

A choice was made by Australian regulators as to which set of these variables were to be included in the calculations for the HILs. HILs for low density residential land uses were calculated using 5 different sets of values for the relevant assumptions:

- use of oral TRV from NZ MfE (for both ingestion and dermal contact) and no age dependent adjustment factor
- use of oral TRV from WHO (for both ingestion and dermal contact) and no age dependent adjustment factor
- use of oral TRV from NZ MfE (for both ingestion and dermal contact) with age dependent adjustment factors
- use of oral TRV from WHO (for both ingestion and dermal contact) with age dependent adjustment factors
- use of oral TRV from NZ MfE for ingestion and Knalfa approach for dermal contact) and no age dependent adjustment factor.

The resultant guidance values (HIL-A) ranged from 0.3 to 20 mg/kg. The Australian regulators chose 3 mg/kg for use as the conservative, widely applicable guideline. This was on the basis that while some sites requiring evaluation are former gasworks or other sites with highly bioavailable PAHs, many sites have PAHs present from less bioavailable sources including asphalt and ash.

The ASC NEPM review recommends the use of the MfE slope factor for site-specific risk assessments especially where the source of PAHs is one of these less bioavailable forms (MfE 2011; NEPC 1999 amended 2013d). It also recommends that consideration of whether to adjust for early life stage exposure and dermal exposure be undertaken on a site-specific basis depending on the source of PAHs at the site and the proposed use of the site. For this site, which is a hospital, early life stage exposures are potentially relevant. In addition, there is no evidence of coal tars and hence the Knafla approach to the assessment of dermal toxicity is not relevant.

The data available on inhalation exposures are dominated by occupational studies associated with exposure to coke oven emissions or coal tar pitch aerosols. BaP is not volatile and hence the relevance of these studies to the assessment of dust issues derived from contaminated sites is not clear.

On the basis of the discussion above, the following toxicity reference values (TRVs) have been adopted for BaP for this site:

- oral TRV (TRV₀) = 0.233 (mg/kg/day)⁻¹ (MfE 2011) for oral and dermal exposures.
- dermal absorption factor (DAF) = 0.06 (6%) (MfE 2011) unless site-specific dermal bioavailability data is available
- oral bioavailability = 100% unless site-specific oral bioavailability is available.
- inhalation TRV = $0.6 \text{ (mg/m}^3)^{-1}$ from the more recent review from the USEPA (USEPA 2017).

For the assessment of exposures by children, age dependent adjustment factors have been adopted as follows (USEPA 2005):

- exposures before 2 years of age 10 fold adjustment
- exposures between 2 and <16 years 3 fold adjustment</p>
- for exposures after 16 years no adjustment.

Appendix D Site-specific health investigation level calculations

Site-specific recreation health investigation level for the Temora Hospital

Summary of Exposure Paramet	ers	Abbreviation	units	Parameter	References/Notes				
Soil and Dust Ingestion Rate	- Young children (0-5 years)	IR _{SC}	mg/day	25	site specific assumption				
Surface Area of Skin	- Young children (0-5 years)	SAc	cm²/day	2434	skin surface are assumed to be dirty each day, based on face, hands, forearms, lower legs and feet, as per MDEP 2002				
Soil-to-Skin Adherence Factor		AF	mg/cm ² /day	0.35	weighted adherence factor as per MDEP 2002				
Time Spent Outdoors		ETo	hours	2	Schedule B7, Table 5				
ne Spent Indoors		ETi	hours	0	Schedule B7, Table 5				
ung Retention Factor		RF	-	0.375	Schedule B7, Table 5				
Particulate Emission Factor		PEFo	(m ³ /kg)	2.6E+07	As per Equation 21 based assumptions presented in Schedule B7				
Outdoor Air-to-Soil Gas Attenuation Factor		α	-	0.05	Value adopted as discussed in Section 5.5 of Schedule B7				
Body weight	- Young children (0-5 years)	BWc	kg	15	Schedule B7, Table 5				
	- Adults	BW _A	kg	70	Schedule B7, Table 5				
xposure Frequency		EF	days/year	52	site-specific assumption				
Exposure Duration	- Young children (0-5 years)	EDc	years	6	Schedule B7, Table 5				
	- Adults	ED _A	years	29	Schedule B7, Table 5				
Averaging Time (non-carcinogeni	:)	AT _T	days	ED*365	Calculated based on ED for each relevant age group, multiplied by 24 hours for the assessment of inhalation exposures				
Averaging Time (carcinogenic)		AT _{NT}	days	25550	Based on lifetime of 70 years, multiplied by 24 hours for the assessment of inhalation exposures				

Non-Threshold Effects - Lifetime Exposures [young child and adult]															
Compound		Toxicity Reference Value Oral	Absorption (GAF)	Dermal (SFd)	Bioavailability	Factor (DAF)		Toxicity Reference Value		Target Risk (TR)	Pathway Specific HILs (mg/kg) Soil Dermal Dust		Dust	(not rounded) (mg/kg) (eqn 2 for	Derived Soil HIL (to 1 or 2 s.f.) (mg/kg)
		(TRV _o) (mg/kg/day) ⁻¹	(unitless)	(mg/kg/day) ⁻¹		(unitless)		Inhalation (TRV _I) (mg/m³) ⁻¹			Ingestion (eqns 4 and 5)	(eqns 7 and 8)	(eqns 10 and 11)	relevant pathways)	
benzo(a)pyrene (Early	-Life)	0.233	1	0.233	100%	0.06		6.66E-02		1E-05	3.5E+02	1.0E+02	6.4E+05	80.5	80